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DFT for periodic systems
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Outline

● Self-consistency in KS equations
● Crystal structure
● k-points
● Plane-Waves
● Supercells

A DFT code adapted to periodic systems:
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Solving KS equations

h r =− ∇2

2
v ion r vH [] r vxc []r 

h r ir =iir 

r =∑
i occ

∣ir ∣
2

depends on the density
 non linear equations

Energy, Forces, Band structure, Electronic density
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Solving KS equations

h r =− ∇2

2
v ion r vH [] r vxc []r 

hi=ii

r =∑
i occ

∣i r ∣
2

First guess for             

Diagonalization

depends on the density
 non linear equations

n≠n−1if

Energy, Forces, Band structure, Electronic density

0r 
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Outline

● Self-consistency in KS equations
● Crystal structure
● k-points
● Plane-Waves
● Supercells

A DFT code adapted to periodic systems:
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Crystal structure
Crystal axis: a

1
, a

2
, a

3

Direct lattice vector:

Periodic potential:

Reciprocal lattice axis:

Reciprocal lattice:

R=n1a1n2a2n3a3

V  rR=V r 

b1=
2
 a2×a3

b2=
2

a3×a1

b3=
2

a1×a2

G=n1b1n2b2n3b3 eiG . R=1
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Bloch theorem and k-points

k i r =e
ik .ruk i r 

Bloch theorem:

where k is in the first Brillouin zone
u

ki
(r) is a periodic function with crystal periodicity

Any periodic operator and, in particular, the Hamiltonian, is diagonal in k.

〈k i∣h∣k ' j〉=∫
V
d r ei k '−k  . rh r uk i

∗ r uk ' j r 

=∑
R
∫

d r e ik '−k  .rR

×h rRuk i
∗ rRuk ' j rR
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k-points allow to split the calculations

〈k i∣h∣k ' j〉=k k ' 〈 k i∣h∣k j〉

The Hamiltonian has blocks of non interacting k-points:
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Solving KS equations with k-points

h r =− ∇2

2
v ion r vH [] r vxc []r 

r = 1
N k

∑
k ,i occ

∣k i r ∣
2

First guess for             

Diagonalizations

depends on the density
 non linear equations

n ≠n−1 if

Energy, Forces, Band structure, Electronic density

hk1k1 i
=k1 ik 1 i hk3k3 i

=k 3 ik 3 i
hk2k2 i

=k 2 ik 2 i

0r 
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Brillouin Zone integration

r = 1
N k

∑
k∈BZ

∑
i occ

∣k ir ∣
2

Many quantities of the scheme require averaging in the BZ,
e.g. kinetic term, electronic density:

r = 1
V BZ

∫
V BZ

d k ∑
i occ

∣k i r ∣
2

to be exact, it should be

We have to find a set of points in the BZ, which makes the limit as fast as possible:

1
N k

∑
k∈BZ


1
V BZ

∫
V BZ

d k
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Brillouin Zone integration
1
N k
∑
k


1
V BZ

∫
V BZ

d k

Monkhorst-Pack technique, Phys. Rev. B 13, 5188 (1976)

2x2 with shift 0.5 0.5 2x2 with shift 0.  0.
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Equivalence k-points/larger cells

1 unit cell 2 unit cells 4 unit cells
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Outline

● Self-consistency in KS equations
● Crystal structure
● k-points
● Plane-Waves
● Supercells

A DFT code adapted to periodic systems:
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Bloch theorem again

k i r =e
ik .ruk i r 

where k is in the first Brillouin zone
u

ki
(r) is a periodic function with crystal periodicity

uk i r =
1
∑

G
ck iGe

iG . r

k i r =
1
∑G ck iGe

ikG  .r

u
ki
(r) is periodic and can be expanded in a Fourier series

G=n1b1n2b2n3b3where  G is on the reciprocal lattice:
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Potentials in plane-waves

R-space: V(r) G-space: V(G)

Example of the ionic potential:

|G|

V ion r =
Z
∣r∣

V ion G=4 Z
∣G∣2
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Plane Waves

V sphere=
4
3 Gmax

3

V PW=
23



Volume of the sphere containing all PW:

Volume of occupied by 1 single PW:

G=n1b1n2b2n3b3

Reciprocal lattice:

Ecutoff=
Gmax

2

2

NG∝ Ecutoff
3 /2
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Cutoff for the density

r = 1
N k

∑
k i occ

k ir k i
∗ r 

=
1

N k
∑
k i occ

∑
GGmax

∑
G 'Gmax

ck iGck i
∗ G ' ei G−G '  . r

= ∑
G02Gmax

G0e
iG 0. r
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PW: an orthogonal basis set

〈kG∣kG ' 〉= 1
∫



d r ei G '−G  .r=GG '

∣k i 〉= ∑
∣G∣Gmax

c k iG ∣kG 〉
The wavefunctions are a linear combination of orthogonal basis functions:

and

Variational principle:

Eground stateE Ecutoff= x Ha 
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PW: an orthogonal basis set
Adding more PW or increasing the cutoff energy
makes ALWAYS the result more accurate

E
exact

Silicon

E
PW

(E
cutoff

)

Gaussian basis sets
of quantum-chemisrty:

STO-3G
STO-6G
3-21G
6-31G
6-31+G*
6-311+G*
6-311++G**
cc-pVDZ
cc-pVTZ
cc-pVQZ
aug-cc-pVDZ
aug-cc-pVTZ
aug-cc-pVQZ
Dünning SVP
Dünning DVP
Dünning TVP
Dünning TVPP
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PW makes life easier thanks to the FFTs

f r =∑
G

f G eiG . r

f G = 1
∫


d r e−iG . r f r 

=
1
N r

∑
ri∈

e−iG . r i f r i Discrete Fourier Transform

It is exact as long as N
G
 = N

r

This means that

f G=DFT−1 [DFT [ f G ]]

The fast version of DFT is the famous Fast FT
with scales as O( N log N ) instead of N2.

This enforces the use of regular grid in real space.
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Illustration of the use FFTs

c k iG 

vH r =∫ d r ' r ' ∣r−r '∣

uk i r 

r  G

vH G  vH  r 

We need to calculate the Hartree potential:

FFT

FFT

FFT

r = 1
N k
∑
k i
∣uk i r ∣

2

vH G=4 G 
∣G∣2
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Supercell technique

L

How to simulate a finite system with periodic boundary conditions?

The cost of the calculation can be problematic,
since 

NG∝ Ecutoff
3 /2

Still useful for slabs, 
wires, etc.
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Recap

● Self-consistent loop
● k-points:

– Monkhorst-Pack grid (like 4x4x4 shift 0.5 0.5 0.5)
– Equivalence between k-points and larger cells

● Plane-Waves
– PW are an orthogonal basis set
– Cutoff energy for wavefunctions
– Intensive use of FFT's to increase efficiency
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