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The many-body problem

Schrödinger equation for a quantum system of N interacting particles:

Ne electrons
Nn nuclei

How to deal with N ≈ 1023 particles?

ĤΨ({R} , {r}) = EΨ({R} , {r})

Ĥ = T̂n ({R}) + V̂nn ({R}) +

T̂e ({r}) + V̂ee ({r}) + Ûen ({R} , {r})
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The many-body Hamiltonian

Ĥ = T̂n ({R}) + V̂nn ({R}) + T̂e ({r}) + V̂ee ({r}) + Ûen ({R} , {r})

T̂n =
Nn∑
I=1

−
∇2

I

2MI
, T̂e =

Ne∑
i=1

−
∇2

i

2m
,

V̂nn =
1

2

Nn∑
I ,J,I 6=J

ZIZJ

|RI − RJ |
, V̂ee =

1

2

Ne∑
i ,j ,i 6=j

1

|ri − rj |
,

Ûen = −
Ne,Nn∑

j ,J

ZJ

|RJ − rj |
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Starting approximations

Born-Oppenheimer separation

In the adiabatic approximation the nuclei are frozen in their equilibrium
positions.

Example of equilibrium geometries
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Starting approximations

Pseudopotential and
pseudowavefunction

Concept of pseudopotentials

The chemically intert core electrons are
frozen in their atomic configuration and
their effect on chemically active valence
electrons is incorporated in an effective
potential.
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Pseudopotentials: generation criteria

A pseudopotential is not unique, several methods of generation also exist.

1 The pseudo-electron eigenvalues must be the same as the valence
eigenvalues obtained from the atomic wavefunctions.

2 Pseudo-wavefunctions must match the all-electron wavefunctions
outside the core (plus continuity conditions).

3 The core charge produced by the pseudo-wavefunctions must be the
same as that produced by the atomic wavefunctions (for
norm-conserving pseudopotentials).

4 The logaritmic derivatives and their first derivatives with respect to
the energy must match outside the core radius (scattering properties).

5 Additional criteria for different recipes.

Key concepts in Density Functional Theory (I) Silvana Botti



The many-body problem A solution: DFT HK theorems KS scheme Summary

Pseudopotentials: quality assessment

It is important to find a compromise between

1 Transferability: ability to describe the valence electrons in different
environments.

2 Efficiency: softness – few plane waves basis functions.

Moreover:
Which states should be included in the valence and which states in the
core? Problem of semicore states.
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The many-body Hamiltonian

Applying the Born-Oppenheimer separation. . .

T̂n =
Nn∑
I=1

−
∇2

I

2MI
, T̂e =

Ne∑
i=1

−
∇2

i

2m
,

V̂nn =
1

2

Nn∑
I ,J,I 6=J

ZIZJ

|RI − RJ |
, V̂ee =

1

2

Ne∑
i ,j ,i 6=j

1

|ri − rj |
,

Ûen = −
Ne,Nn∑

j ,J

ZJ

|RJ − rj |
=

Ne∑
j

v (rj)

0 = �

constant→
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The many-body problem

Schrödinger Equation for a quantum-system of Ne interacting electrons:

Ne electrons

Still, how to deal with Ne ≈ 1023 particles?

ĤΨ({r}) = EeΨ({r})

Ĥ =
Ne∑
i=1

[
−
∇2

i

2m
+ v (ri )

]
+

1

2

Ne∑
i ,j ,i 6=j

1

|ri − rj |
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Why we don’t like the electronic wavefunction

How many DVDs are necessary to store a wavefunction?

Classical example: Oxygen atom (8 electrons)

Ψ(r1, . . . , r8) depends on 24 coordinates

Rough table of the wavefunction:

10 entries per coordinate: =⇒ 1024 entries
1 byte per entry : =⇒ 1024 bytes
5× 109 bytes per DVD: =⇒ 2× 1014 DVDs
10 g per DVD: =⇒ 2× 1015 g DVDs

= ×109 t DVDs
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Ground state densities vs potentials

Question at the heart of DFT

Is there a 1-to-1 mapping between different external potentials v(r) and
their corresponding ground state densities ρ(r)?
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Density functional theory (DFT): the essence

If we can give a positive answer, then it can be proved that

(i) all observable quantities of a quantum system are completely
determined by the density.

(ii) which means that the basic variable is no more the many-body
wavefunction Ψ ({r)} but the electron density ρ(r).

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

You can find all details in R. M. Dreizler and E.K.U. Gross, Density

Functional Theory, Springer (Berlin, 1990).
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Density functional theory (DFT)

Hohenberg-Kohn (HK) theorem – I

The expectation value of any physical observable of a many-electron
system is a unique functional of the electron density ρ.

Hohenberg-Kohn (HK) theorem – II

The total energy functional has a minimum, the ground state energy E0,
at the ground state density ρ0.

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
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Density functional theory (DFT)

Restrictions:

In practice, only ground state properties.

The original proof is valid for local, spin-independent external
potential, non-degenerate ground state.

There exist extensions to degenerate ground states, spin-dependent,
magnetic systems, etc.
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Hohenberg-Kohn theorem – I

v(r) ({r})ψ (r)ρ

single−particle

a nondegenerate
ground state

ground−state
wavefunctions

ground−state
densitiespotentials having

A A
~

G

G : v (r) → ρ (r) is obvious.

HK theorem states that G is invertible.

Key concepts in Density Functional Theory (I) Silvana Botti



The many-body problem A solution: DFT HK theorems KS scheme Summary

Hohenberg-Kohn theorem – I

Proof:

1 A is invertible: the Schrödinger equation can be always solved for the
external potential, yielding the potential as a unique function of Ψ.

V̂ =
∑

i

v (ri ) =

(
E − T̂ − V̂ee

)
Ψ

Ψ
= − T̂Ψ

Ψ
− V̂ee + const.

2 Ã is invertible (proof for non-degenerate ground state):(
T̂ + Ŵ + V̂

)
Ψ = EΨ(

T̂ + Ŵ + V̂ ′
)

Ψ′ = E ′Ψ′

Now what is left to show is that Ψ 6= Ψ′ ⇒ ρ 6= ρ′
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Hohenberg-Kohn theorem – I

Applying the variational principle (Rayleigh-Ritz):

E = 〈Ψ|Ĥ|Ψ〉 < 〈Ψ′|Ĥ|Ψ′〉 = E ′ +

∫
d3r ρ′(r)

[
v(r)− v ′(r)

]
E ′ = 〈Ψ′|Ĥ ′|Ψ′〉 < 〈Ψ|Ĥ ′|Ψ〉 = E +

∫
d3r ρ(r)

[
v ′(r)− v(r)

]

Proof by contradiction:
If ρ 6= ρ′ it has to be E + E ′ < E + E ′, which is absurd.
Therefore, we deduce that Ψ 6= Ψ′ ⇒ ρ 6= ρ′
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Hohenberg-Kohn theorem – I

Direct consequence of the 1st HK theorem

The expectation value of any physical observable of a many-electron
system is a unique functional of the electron density ρ.

Proof: ρ
G−1

−→ v [ρ]
solving S.E.−→ Ψ0 [ρ]

Then an observable Ô [ρ] = 〈Ψ0 [ρ] |Ô|Ψ0 [ρ]〉 is a functional of ρ.
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Reminder: what is a functional?

(r) R

set of functions set of real numbers

functional
ρ

[ρ]E

vr [ρ] = v [ρ] (r) is a functional that depends parametrically on r

Ψr1...rN [ρ] = Ψ [ρ] (r1 . . . rN) is a functional that depends
parametrically on r1 . . . rN
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Hohenberg-Kohn (HK) theorem – II

2nd HK theorem: Variational principle

The total energy functional has a minimum, the ground state energy E0,
at the ground state density ρ0.

〈Ψ0|Ĥ|Ψ0〉 = min {EHK [ρ]} = E0 [ρ0]

Euler-Lagrange equation:

δ

δρ(r)

[
EHK [ρ]− µ

(∫
d3r ρ(r)− N

)]
= 0

It yields the exact ground-state energy E0 and density ρ0(r).
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Hohenberg-Kohn (HK) theorem – II

Formal construction of EHK [ρ]:

For an arbitrary ground state density it is always true ρ(r)
Ã−1

−→ Ψ [ρ]
⇒ we can define the functional of the density:

EHK [ρ] = 〈Ψ [ρ] |T̂ + Û + V̂ |Ψ [ρ]〉

EHK [ρ] >E0 for ρ 6=ρ0

EHK [ρ] =E0 for ρ=ρ0

EKS [ρ] = FHK [ρ] +
∫

d3r v(r)ρ(r)
FHK [ρ] is universal, as it does not depend on the external potential.
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Hohenberg-Kohn (HK) theorem – II

In principle: the Euler-Lagrange equation allows to calculate ρ0(r) without
introducing a Schrödinger equation.

The universal functional

EKS [ρ] = FHK [ρ] +

∫
d3r v(r)ρ(r)

FHK [ρ] = 〈Ψ|T̂ + Û|Ψ〉

The HK theorem proofs the existence of the universal functional FHK [ρ]
but it does not say how to determine it.

In practice: FHK [ρ] needs to be approximated and approximations of T [ρ]
lead to large errors in the total energy.
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Reformulation: Kohn-Sham scheme

vext[ρ] (r)(r) vKS

interacting particles
HK 1−1 mapping for

ρ

HK 1−1 mapping
non−interacting particles

[ρ](r)

Essence of the mapping

The density of a system of interacting particles can be calculated exactly
as the density of an auxiliary system of non-interacting particles

=⇒ Reformulation in terms of single-particle orbitals!

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
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Back to the Hohenberg-Kohn variational principle

For a non-interacting system:

EKS [ρ] = 〈Ψ[ρ]|T̂s + V̂KS|Ψ[ρ]〉 = Ts[ρ] +

∫
d3r ρ(r)vKS(r)

Euler-Lagrange equation for the non-interacting system

δ

δρ(r)

[
EKS [ρ]− µ

(∫
d3r ρ(r)− N

)]
= 0

δTs [ρ]

δρ(r)
+ vKS(r) = µ

Key concepts in Density Functional Theory (I) Silvana Botti



The many-body problem A solution: DFT HK theorems KS scheme Summary

Using a one-particle Schrödinger equation

Kohn-Sham equations[
−∇

2

2
+ vKS (r)

]
φi (r) = εiφi (r)

ρ0 (r) =
∑

i , lowest εi

|φi (r) |2

εi = KS eigenvalues, φi (r) = KS single-particle orbitals

Can we always build vKS for the non-interacting electron system?

Uniqueness of vKS follows from HK 1-1 mapping.

Existence of vKS is guaranteed by V-representability theorem.
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Problem of V-representability

Definition

ρ(r) is V-representable if it is the ground-state density of some potential V .

Question

Are all reasonable functions ρ(r) V-representable?

Answer: V-representability theorem

On a lattice (finite or infinite) any normalizable positive function ρ(r), that is
compatible with the Pauli principle, is both interacting and non-interacting
V-representable. For degenerate ground states such a ρ(r) is ensemble
V-representable, i.e. representable as a linear combination of the degenerate
ground-states densities.

Chayes, Chayes, Ruskai, J Stat. Phys. 38, 497 (1985).
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Reformulation: Kohn-Sham scheme

Kohn-Sham one-particle equations[
−∇

2

2
+ vKS (r)

]
φi (r) = εiφi (r)

to solve self-consistenlty with ρ0 (r) =
∑

i |φi (r) |2

εi = KS eigenvalues, φi (r) = KS single-particle orbitals

Which is the form of vKS for the non-interacting electrons?
Hartree potential

↙
vKS (r) = v (r) + vH (r) + vxc (r)

↗
unknown exchange-correlation (xc) potential
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Kohn-Sham scheme: Hartree and xc potentials

Hartree potential

vH [ρ] (r) =

∫
d3r ′

ρ (r′)

|r − r′|
vH describes classic electrostatic interaction

Exchange-correlation (xc) potential

vxc [ρ] (r) =
δ Exc [ρ]

δ ρ (r)

vxc encompasses many-body effects
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Kohn-Sham scheme: xc potential

Proof:

We define
Exc [ρ] = FHK [ρ]− EH [ρ]− Ts [ρ]

We use the variational principle (and δ EH[ρ]
δ ρ(r) = vH (r))

δFHK [ρ]

δρ(r)
+ v(r) = µ ⇒ δFHK [ρ]

δρ(r)
= −v(r) + µ

δTs [ρ]

δρ(r)
+ vKS(r) = µ ⇒ δTs [ρ]

δρ(r)
= −vKS(r) + µ

To obtain vKS (r) = v (r) + vH (r) + vxc (r), δ Exc[ρ]
δ ρ(r) = vxc (r)
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Approximations for the xc potential

LDA:

ELDA
xc [ρ] =

∫
d3r ρ (r) εHEG

xc (ρ (r))

LSDA:

ELSDA
xc [ρ↑, ρ↓] =

∫
d3r ρ (r) εHEG

xc (ρ↑, ρ↓)

GGA:

EGGA
xc [ρ↑, ρ↓] =

∫
d3r ρ (r) εGGA

xc (ρ↑, ρ↓,∇ρ↑,∇ρ↓)

meta-GGA:

EMGGA
xc [ρ↑, ρ↓] =

∫
d3r ρ (r) εMGGA

xc

(
ρ↑, ρ↓,∇ρ↑,∇ρ↓,∇2ρ↑,∇2ρ↓, τ↑, τ↓

)
EXX, SIC-LDA, hybrid Hartree-Fock/DFT functionals, . . .
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Summary

The electron density is the key-variable to study ground-state
properties of an interacting electron system.

The ground state expectation value of any physical observable of a
many-electron system is a unique functional of the electron density ρ.

The total energy functional EHK [ρ] has a minimum, the ground state
energy E0, in correspondence to the ground state density ρ0.

The universal functional FHK [ρ] is hard to approximate.

The Kohn-Sham scheme allows a reformulation in terms of
one-particle orbitals.
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