Key concepts in Density Functional Theory (II) Kohn-Sham scheme and band structures

Silvana Botti

European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés

Ecole Polytechnique, Palaiseau - France

Present Address: LPMCN Université Lyon 1 - France

April 14, 2008 - CFC Coimbra

1 From Kohn-Sham equations to band structures • An example

Can we calculate excited states within static DFT?

Density functional theory in the Kohn-Sham scheme

- gives an efficient and accurate description of GROUND STATE properties (total energy, lattice constants, atomic structure, elastic constants, phonon spectra ...)
- is not designed to access EXCITED STATES
- however . . .

Can we calculate excited states within static DFT?

Density functional theory in the Kohn-Sham scheme

- gives an efficient and accurate description of GROUND STATE properties (total energy, lattice constants, atomic structure, elastic constants, phonon spectra ...)
- is not designed to access EXCITED STATES

however . . .

Can we calculate excited states within static DFT?

Density functional theory in the Kohn-Sham scheme

- gives an efficient and accurate description of GROUND STATE properties (total energy, lattice constants, atomic structure, elastic constants, phonon spectra ...)
- is not designed to access EXCITED STATES
- however ...

Kohn-Sham band structure: some facts

One-electron band structure

is the dispersion of the energy levels n as a function of \mathbf{k} in the Brillouin zone.

- The Kohn-Sham eigenvalues and eigenstates are not one-electron energy states for the electron in the solid.
- However, it is common to interpret the solutions of Kohn-Sham equations as one-electron states: the result is often a good representation, especially concerning band dispersion.
- Gap problem: the KS band structure underestimates systematically the band gap (often by more than 50%)

Band structures

Summary

Discontinuity in $V_{\rm xc}$

Band gap error not due to LDA, but to the discontinuity in the exact V_{xc} .

J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).

R. W. Godby, M. Schlüter and L. J. Sham, Phys. Rev. Lett. 56, 2415 (1986).

Summary

GaAs band structure

Experimental gap: 1.53 eV DFT-LDA gap: 0.57 eV

Applying a scissor operator (0.8 eV) we can correct the band structure.

DFT in practice

Pseudopotential or all-electron?

- Represent Kohn-Sham orbitals on a basis (plane waves, atomic orbitals, gaussians, LAPW, real space grid,..)
- **③** Calculate the total energy for trial orbitals. For plane waves:
 - kinetic energy, Hartree potential in reciprocal space,
 - xc potential, external potential in real space
 - FFTs!
- Sum over states = BZ integration for solids: special k-points
- **5** Iterate or minimize to self-consistency

Software supporting DFT

- Abinit
- ADF
- AIMPRO
- Atomistix Toolkit
- CADPAC
- CASTEP
- CPMD
- CRYSTAL06
- DACAPO
- DALTON
- deMon2K
- DFT++
- DMol3

- EXCITING
- Fireball
- FSatom list of codes
- GAMESS (UK)
- GAMESS (US)
- GAUSSIAN
- JAGUAR
- MOLCAS
- MOLPRO
- MPQC
- NRLMOL
- NWChem
- OCTOPUS

- OpenMX
- ORCA
- ParaGauss
- PLATO
- PWscf (Quantum-ESPRESSO)
- Q-Chem
- SIESTA
- Spartan
- S/PHI/nX
- TURBOMOLE
- VASP
- WIEN2k

http://en.wikipedia.org/wiki/Density_functional_theory

1 From Kohn-Sham equations to band structures • An example

Band structures

Summary

The code ABINIT

http://www.abinit.org

- First-principles computation of material properties : the ABINIT software project."
 - X. Gonze et al, Computational Materials Science 25, 478-492 (2002).
- "A brief introduction to the ABINIT software package."
 X. Gonze *et al*, Zeit. Kristallogr. 220, 558-562 (2005).

Coming soon: Tutorial III

Ground state geometry and band structure of bulk silicon

- Determination of the total energy.
- **2** Determination of the lattice parameter *a*.
- Computation of the Kohn-Sham band structure.

Equilibrium geometry of silicon

- Our DFT-LDA lattice parameter: a = 10.217 Bohr = 5.407 Å
- Exp. value: *a* = 5.431 Å at 25°.

Kohn-Sham band structure of silicon

- Indirect gap
- Good dispersion of bands close to the gap
- Exp. gap = 1.17 eV
- Scissor operator = 0.65 - 0.7 eV

Summary

- Application of standard DFT to solids:
 - band structure calculations (Kohn-Sham bands)
- We know that the Kohn-Sham bands are not quasiparticle states.
- However they turn out to give a qualitative picture in many cases.
- When they are completely wrong we need to go beyond standard DFT.

Coming next: All you need to know to make a DFT calculation in practice!

Suggestion of essential bibliography

Some additional items:

R. M. Martin, *Electronic structure: Basic Theory and Practical Methods*, Cambridge University Press (2004).

http://www.abinit.org and references there.

