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@ Retain information.
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@ Finite region of the space: Box
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@ For finite systems functions go to zero.

@ Impose functions to be zero over the border of the box.

@ The box has to be large enough to contain the functions.

@ Optimize the shape of the box to minimize the number of points.
@ Other BCs are possible: periodic, zero derivative, open.
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@ Natural boundary conditions for different problems.
@ Systematically improve discretization quality:

o Decrease the spacing.

o Increase the box size.
@ Orthogonal “basis set”.
@ Independent of atomic positions (no Pulay forces).
@ Problems:

o Break translational invariance: egg-box effect.
o Break rotational invariance.
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@ Derivative in a point:
sum over neighbour points.

@ ¢;; depend on the points used: o o o o 0 o o o o
the stencil.

@ More points — more precision. e o o o6 0o 0 o o o
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@ What we want to solve:
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@ What we want to solve:
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@ We use a self-consistency scheme to treat non-linearity.
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@ The non-local potential is applied in small spherical grid around
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@ The Hamiltonian becomes a finite size matrix.
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@ We need to find the eigenvectors and eigenvalues of a matrix.
@ Very large matrix with lots of zero components (Sparse).

@ We use lterative solvers where only the action of the matrix is
required.



@ We minimize (using conjugated gradient or other method):



@ We minimize (using conjugated gradient or other method):




@ We minimize (using conjugated gradient or other method):

(Y| H[p)
(Y1)

() =

@ Works for the first state.



@ We minimize (using conjugated gradient or other method):

(Y| H[p)
(Y1)

() =

@ Works for the first state.

@ For higher energy states it is necessary to orthogonalize against
the lower ones.
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@ Norm-conserving pseudopotentials.
@ Multilevel parallelization.
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