

Real Space DFT: The gory details

Xavier Andrade

European Theoretical Spectroscopy Facility and Departamento de Física de Materiales Universidad del País Vasco, Spain

Coimbra, April 2008

• Give an insight of how a real space grid base code works.

What are the advantages and disadvantages of this method.

- Give an insight of how a real space grid base code works.
- What are the advantages and disadvantages of this method.

• Partial Differential Equation: infinite degrees of freedom.

- Solve it numerically.
- Reduce it to a finite number.
- Retain information.

- Partial Differential Equation: infinite degrees of freedom.
- Solve it numerically.
- Reduce it to a finite number.
- Retain information.

- Partial Differential Equation: infinite degrees of freedom.
- Solve it numerically.
- Reduce it to a finite number.
- Retain information.

- Partial Differential Equation: infinite degrees of freedom.
- Solve it numerically.
- Reduce it to a finite number.
- Retain information.

• Point distribution:

- Uniform space grid.
- Distance between points is constant: Spacing.
- Non-uniform grids

• Point distribution:

- Uniform space grid.
- Distance between points is constant: Spacing.
- Non-uniform grids.

Point distribution:

- Uniform space grid.
- Distance between points is constant: Spacing.
- Non-uniform grids.

Point distribution:

- Uniform space grid.
- Distance between points is constant: Spacing.
- Non-uniform grids.

Point distribution:

- Uniform space grid.
- Distance between points is constant: Spacing.
- Non-uniform grids.

Point distribution:

- Uniform space grid.
- Distance between points is constant: Spacing.
- Non-uniform grids.
- Finite region of the space: Box

Real space grid: 2D Example

									•	•	•											•	•		•								
					٠	٠	٠	٠	٠	٠	٠	٠	٠	٠					٠	٠	٠	•	٠	٠	٠	٠	٠	٠					
				٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠			٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠				
			٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠			
		٠	•	•	•	٠	٠	•	٠	٠	•	•	٠	•	•	٠	•	٠	•	•	٠	٠	•	٠	•	٠	•	•	•	•	•		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
			•	•	•																						•			•			
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	٠	٠	٠	٠	•	•	•	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
			٠	٠	٠	٠	•	•	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠	٠	٠	٠	٠	•	•	٠	٠	٠	٠	٠			
				•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•				
						•	•	•	•	•	•	•	•							•	•	•	•	•	•	•	•						
									-	-	-											-											

• For finite systems functions go to zero.

- Impose functions to be zero over the border of the box.
- The box has to be large enough to contain the functions.
- Optimize the shape of the box to minimize the number of points.
- Other BCs are possible: periodic, zero derivative, open.

• For finite systems functions go to zero.

- Impose functions to be zero over the border of the box.
- The box has to be large enough to contain the functions.
- Optimize the shape of the box to minimize the number of points.
- Other BCs are possible: periodic, zero derivative, open.

- For finite systems functions go to zero.
- Impose functions to be zero over the border of the box.
- The box has to be large enough to contain the functions.
- Optimize the shape of the box to minimize the number of points.
- Other BCs are possible: periodic, zero derivative, open.

- For finite systems functions go to zero.
- Impose functions to be zero over the border of the box.
- The box has to be large enough to contain the functions.
- Optimize the shape of the box to minimize the number of points.
- Other BCs are possible: periodic, zero derivative, open.

- For finite systems functions go to zero.
- Impose functions to be zero over the border of the box.
- The box has to be large enough to contain the functions.
- Optimize the shape of the box to minimize the number of points.
- Other BCs are possible: periodic, zero derivative, open.

• Natural boundary conditions for different problems.

- Systematically improve discretization quality:
 - Decrease the spacing.
 - Increase the box size.
- Orthogonal "basis set".
- Independent of atomic positions (no Pulay forces).
- Problems:
 - Break translational invariance: egg-box effect.
 - Break rotational invariance.

• Natural boundary conditions for different problems.

• Systematically improve discretization quality:

- Decrease the spacing.
- Increase the box size.
- Orthogonal "basis set".
- Independent of atomic positions (no Pulay forces).

Problems:

- Break translational invariance: egg-box effect.
- Break rotational invariance.

- Natural boundary conditions for different problems.
- Systematically improve discretization quality:
 - Decrease the spacing.
 - Increase the box size.
- Orthogonal "basis set".
- Independent of atomic positions (no Pulay forces).
- Problems:
 - Break translational invariance: egg-box effect.
 - Break rotational invariance.

- Natural boundary conditions for different problems.
- Systematically improve discretization quality:
 - Decrease the spacing.
 - Increase the box size.
- Orthogonal "basis set".
- Independent of atomic positions (no Pulay forces).
- Problems:
 - Break translational invariance: egg-box effect.
 - Break rotational invariance.

- Natural boundary conditions for different problems.
- Systematically improve discretization quality:
 - Decrease the spacing.
 - Increase the box size.
- Orthogonal "basis set".
- Independent of atomic positions (no Pulay forces).
- Problems:
 - Break translational invariance: egg-box effect.
 - Break rotational invariance.

- Natural boundary conditions for different problems.
- Systematically improve discretization quality:
 - Decrease the spacing.
 - Increase the box size.
- Orthogonal "basis set".
- Independent of atomic positions (no Pulay forces).
- Problems:
 - Break translational invariance: egg-box effect.
 - Break rotational invariance.

- Natural boundary conditions for different problems.
- Systematically improve discretization quality:
 - Decrease the spacing.
 - Increase the box size.
- Orthogonal "basis set".
- Independent of atomic positions (no Pulay forces).
- Problems:
 - Break translational invariance: egg-box effect.
 - Break rotational invariance.

- Natural boundary conditions for different problems.
- Systematically improve discretization quality:
 - Decrease the spacing.
 - Increase the box size.
- Orthogonal "basis set".
- Independent of atomic positions (no Pulay forces).
- Problems:
 - Break translational invariance: egg-box effect.
 - Break rotational invariance.

- Natural boundary conditions for different problems.
- Systematically improve discretization quality:
 - Decrease the spacing.
 - Increase the box size.
- Orthogonal "basis set".
- Independent of atomic positions (no Pulay forces).
- Problems:
 - Break translational invariance: egg-box effect.
 - Break rotational invariance.

Differential operations

Finite difference approach

$$\nabla^2 f(n_x h, n_y h) = \sum_{i}^{n} \sum_{j}^{n} \frac{c_{ij}}{h} f(n_x h + ih, n_y h + jh)$$

• Derivative in a point: sum over neighbour points.

- *c_{ij}* depend on the points used: *the stencil.*
- More points → more precision.

٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	•	٠	٠	٠	٠
٠	٠	٠	٠	•	٠	٠	٠	٠
•	٠	٠	•	•	٠	٠	•	٠
•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	٠	٠
٠	•	•	٠	•	•	•	•	٠
٠	٠	٠	•	•	٠	٠	•	٠
•	•	•	•	•	•	•	•	٠

Differential operations

Finite difference approach

$$\nabla^2 f(n_x h, n_y h) = \sum_{i}^{n} \sum_{j}^{n} \frac{c_{ij}}{h} f(n_x h + ih, n_y h + jh)$$

- Derivative in a point: sum over neighbour points.
- *c_{ij}* depend on the points used: *the stencil*.
- More points → more precision.

٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	•	٠	٠	٠	٠
٠	٠	٠	٠	•	٠	٠	٠	٠
•	٠	٠	•	•	٠	٠	•	•
•	•	•	•	•	•	•	•	•
٠	٠	٠	•	•	٠	٠	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•

Differential operations

Finite difference approach

$$\nabla^2 f(n_x h, n_y h) = \sum_{i}^{n} \sum_{j}^{n} \frac{c_{ij}}{h} f(n_x h + ih, n_y h + jh)$$

- Derivative in a point: sum over neighbour points.
- *c_{ij}* depend on the points used: *the stencil.*
- More points \rightarrow more precision.

٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	•	٠	٠	٠	٠
٠	٠	٠	٠	•	٠	٠	٠	٠
٠	٠	٠	٠	•	٠	٠	•	٠
•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	٠
٠	٠	•	•	•	٠	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•

Trapezoidal rule

$$\int f(x,y) \, dx \, dy = h^2 \sum_{ij} f(ih, jh)$$

• What we want to solve:

Kohn-Sham equations

$$-\nabla^{2}\phi_{k} + V_{eff}\left[\rho\right](\boldsymbol{r})\phi = \epsilon_{k}\phi_{k}$$

• We use a self-consistency scheme to treat non-linearity.

• What we want to solve:

Kohn-Sham equations

$$-\nabla^{2}\phi_{k}+V_{eff}\left[\rho\right]\left(\boldsymbol{r}\right)\phi=\epsilon_{k}\phi_{k}$$

• We use a self-consistency scheme to treat non-linearity.

• What we want to solve:

Kohn-Sham equations

$$-\nabla^{2}\phi_{k} + V_{eff}\left[\rho\right](\boldsymbol{r})\phi = \epsilon_{k}\phi_{k}$$

• We use a self-consistency scheme to treat non-linearity.

• For the laplacian we use finite differences

- High order schemes are needed.
- The local part of the potential is direct.
- The non-local potential is applied in small spherical grid around the atoms.
- The Hamiltonian becomes a finite size matrix.

• For the laplacian we use finite differences

- High order schemes are needed.
- The local part of the potential is direct.
- The non-local potential is applied in small spherical grid around the atoms.
- The Hamiltonian becomes a finite size matrix.

For the laplacian we use finite differences

- High order schemes are needed.
- The local part of the potential is direct.
- The non-local potential is applied in small spherical grid around the atoms.
- The Hamiltonian becomes a finite size matrix.

- For the laplacian we use finite differences
 - High order schemes are needed.
- The local part of the potential is direct.
- The non-local potential is applied in small spherical grid around the atoms.
- The Hamiltonian becomes a finite size matrix.

- For the laplacian we use finite differences
 - High order schemes are needed.
- The local part of the potential is direct.
- The non-local potential is applied in small spherical grid around the atoms.
- The Hamiltonian becomes a finite size matrix.

• We need to find the eigenvectors and eigenvalues of a matrix.

- Very large matrix with lots of zero components (Sparse).
- We use Iterative solvers where only the action of the matrix is required.

- We need to find the eigenvectors and eigenvalues of a matrix.
- Very large matrix with lots of zero components (Sparse).
- We use Iterative solvers where only the action of the matrix is required.

- We need to find the eigenvectors and eigenvalues of a matrix.
- Very large matrix with lots of zero components (Sparse).
- We use Iterative solvers where only the action of the matrix is required.

• We minimize (using conjugated gradient or other method):

Rayleigh-Ritz quotient

$$\epsilon(\psi) = rac{\langle \psi | H | \psi
angle}{\langle \psi | \psi
angle}$$

- Works for the first state.
- For higher energy states it is necessary to orthogonalize against the lower ones.

• We minimize (using conjugated gradient or other method):

Rayleigh-Ritz quotient

$$\epsilon(\psi) = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}$$

- Works for the first state.
- For higher energy states it is necessary to orthogonalize against the lower ones.

• We minimize (using conjugated gradient or other method):

Rayleigh-Ritz quotient

$$\epsilon(\psi) = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}$$

• Works for the first state.

 For higher energy states it is necessary to orthogonalize against the lower ones.

We minimize (using conjugated gradient or other method):

Rayleigh-Ritz quotient

$$\epsilon(\psi) = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}$$

- Works for the first state.
- For higher energy states it is necessary to orthogonalize against the lower ones.

• Open source code.

- Real space grid representation.
- Focused on finite systems (periodic systems not mature yet).
 Features:
 - Ground state DET.

 - Time propagation:
 - linear response and strong fields
 - Gasida LR-TDDFT.
 - Stemheimer linear and non-linear response
 - Car-Parrinello molecular dynamics.
 - Ehrefenst molecular dynamics (adiabatic and non-adiabatic). Optimal control theory.
- Norm-conserving pseudopotentials.

Multilevel parallelization.

¹http://www.tddft.org/programs/octopus

X. Andrade (EHU/UPV)

- Open source code.
- Real space grid representation.
- Focused on finite systems (periodic systems not mature yet).Features:
 - Ground state DET.
 - TDDFT
 - Time propagation: linear response and strong fields.
 - Casida LR-TDDFT.
 - Stemheimer linear and non-linear response
 - Car-Parrinello molecular dynamics.
 - Ehrefenst molecular dynamics (adiabatic and non-adiabatic).
 Optimal control theory.
- Norm-conserving pseudopotentials.

Multilevel parallelization.

¹http://www.tddft.org/programs/octopus

X. Andrade (EHU/UPV)

- Open source code.
- Real space grid representation.
- Focused on finite systems (periodic systems not mature yet).

• Features:

- Ground state DFT
- TDDFT
- Time propagation:
 linear records and strong fit
- Casida LR-TDDFT.
- Stemheimer linear and non-linear response
- Car-Parrinello molecular dynamics.
- Ehrefenst molecular dynamics (adiabatic and non-adiabatic).
 Optimal control theory.
- Norm-conserving pseudopotentials.

Multilevel parallelization.

¹http://www.tddft.org/programs/octopus

X. Andrade (EHU/UPV)

- Open source code.
- Real space grid representation.
- Focused on finite systems (periodic systems not mature yet).

• Features:

- Ground state DFT.
- TDDF1
- Time propagation: linear response and strong fields.
- Casida LR-TDDFT.
- Sternheimer linear and non-linear response.
- Car-Parrinello molecular dynamics.
- Ehrefenst molecular dynamics (adiabatic and non-adiabatic).
- Optimal control theory.
- Norm-conserving pseudopotentials.
- Multilevel parallelization.

¹http://www.tddft.org/programs/octopus

X. Andrade (EHU/UPV)

- Open source code.
- Real space grid representation.
- Focused on finite systems (periodic systems not mature yet).
- Features:
 - Ground state DFT.
 - TDDF
 - Time propagation: linear response and strong fields.
 - Casida LR-TDDFT.
 - Sternheimer linear and non-linear response.
 - Car-Parrinello molecular dynamics.
 - Ehrefenst molecular dynamics (adiabatic and non-adiabatic).
 - Optimal control theory.
- Norm-conserving pseudopotentials.
- Multilevel parallelization.

¹http://www.tddft.org/programs/octopus

X. Andrade (EHU/UPV)

- Open source code.
- Real space grid representation.
- Focused on finite systems (periodic systems not mature yet).
- Features:
 - Ground state DFT.
 - TDDFT
 - Time propagation: linear response and strong fields.
 - Casida LR-TDDFT.
 - Sternheimer linear and non-linear response.
 - Car-Parrinello molecular dynamics.
 - Ehrefenst molecular dynamics (adiabatic and non-adiabatic).
 - Optimal control theory.
- Norm-conserving pseudopotentials.
- Multilevel parallelization.

¹http://www.tddft.org/programs/octopus

X. Andrade (EHU/UPV)

- Open source code.
- Real space grid representation.
- Focused on finite systems (periodic systems not mature yet).
- Features:
 - Ground state DFT.
 - TDDFT
 - Time propagation: linear response and strong fields.
 - Casida LR-TDDFT.
 - Sternheimer linear and non-linear response.
 - Car-Parrinello molecular dynamics.
 - Ehrefenst molecular dynamics (adiabatic and non-adiabatic).
 - Optimal control theory.
- Norm-conserving pseudopotentials.
- Multilevel parallelization.

¹http://www.tddft.org/programs/octopus

X. Andrade (EHU/UPV)

- Open source code.
- Real space grid representation.
- Focused on finite systems (periodic systems not mature yet).
- Features:
 - Ground state DFT.
 - TDDFT
 - Time propagation: linear response and strong fields.
 - Casida LR-TDDFT.
 - Sternheimer linear and non-linear response.
 - Car-Parrinello molecular dynamics.
 - Ehrefenst molecular dynamics (adiabatic and non-adiabatic).
 - Optimal control theory.
- Norm-conserving pseudopotentials.
- Multilevel parallelization.

¹http://www.tddft.org/programs/octopus

X. Andrade (EHU/UPV)

- Open source code.
- Real space grid representation.
- Focused on finite systems (periodic systems not mature yet).
- Features:
 - Ground state DFT.
 - TDDFT
 - Time propagation: linear response and strong fields.
 - Casida LR-TDDFT.
 - Sternheimer linear and non-linear response.
 - Car-Parrinello molecular dynamics.
 - Ehrefenst molecular dynamics (adiabatic and non-adiabatic).
 - Optimal control theory.
- Norm-conserving pseudopotentials.
- Multilevel parallelization.

¹http://www.tddft.org/programs/octopus

X. Andrade (EHU/UPV)

Real Space DFT: The gory details

Coimbra, April 2008 14 / 14

- Open source code.
- Real space grid representation.
- Focused on finite systems (periodic systems not mature yet).
- Features:
 - Ground state DFT.
 - TDDFT
 - Time propagation: linear response and strong fields.
 - Casida LR-TDDFT.
 - Sternheimer linear and non-linear response.
 - Car-Parrinello molecular dynamics.
 - Ehrefenst molecular dynamics (adiabatic and non-adiabatic).
 - Optimal control theory.
- Norm-conserving pseudopotentials.
- Multilevel parallelization.

¹http://www.tddft.org/programs/octopus

X. Andrade (EHU/UPV)

- Open source code.
- Real space grid representation.
- Focused on finite systems (periodic systems not mature yet).
- Features:
 - Ground state DFT.
 - TDDFT
 - Time propagation: linear response and strong fields.
 - Casida LR-TDDFT.
 - Sternheimer linear and non-linear response.
 - Car-Parrinello molecular dynamics.
 - Ehrefenst molecular dynamics (adiabatic and non-adiabatic).
 - Optimal control theory.
- Norm-conserving pseudopotentials.
- Multilevel parallelization.

¹http://www.tddft.org/programs/octopus

X. Andrade (EHU/UPV)

Real Space DFT: The gory details

Coimbra, April 2008 14 / 14

- Open source code.
- Real space grid representation.
- Focused on finite systems (periodic systems not mature yet).
- Features:
 - Ground state DFT.
 - TDDFT
 - Time propagation: linear response and strong fields.
 - Casida LR-TDDFT.
 - Sternheimer linear and non-linear response.
 - Car-Parrinello molecular dynamics.
 - Ehrefenst molecular dynamics (adiabatic and non-adiabatic).
 - Optimal control theory.
- Norm-conserving pseudopotentials.
- Multilevel parallelization.

¹http://www.tddft.org/programs/octopus

X. Andrade (EHU/UPV)

- Open source code.
- Real space grid representation.
- Focused on finite systems (periodic systems not mature yet).
- Features:
 - Ground state DFT.
 - TDDFT
 - Time propagation: linear response and strong fields.
 - Casida LR-TDDFT.
 - Sternheimer linear and non-linear response.
 - Car-Parrinello molecular dynamics.
 - Ehrefenst molecular dynamics (adiabatic and non-adiabatic).
 - Optimal control theory.
- Norm-conserving pseudopotentials.

• Multilevel parallelization.

¹http://www.tddft.org/programs/octopus

X. Andrade (EHU/UPV)

- Open source code.
- Real space grid representation.
- Focused on finite systems (periodic systems not mature yet).
- Features:
 - Ground state DFT.
 - TDDFT
 - Time propagation: linear response and strong fields.
 - Casida LR-TDDFT.
 - Sternheimer linear and non-linear response.
 - Car-Parrinello molecular dynamics.
 - Ehrefenst molecular dynamics (adiabatic and non-adiabatic).
 - Optimal control theory.
- Norm-conserving pseudopotentials.
- Multilevel parallelization.

¹http://www.tddft.org/programs/octopus

X. Andrade (EHU/UPV)