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The Electronic Many-Body Problem

Non-relativistic time-dependent many-electron problem:

i
d
dt
|Φ(t)〉 = Ĥ(t)|Φ〉 ,

Ĥ(t) =

N
∑

i=1

t̂i +

N
∑

i=1

vext(~̂ri, t) +

N
∑

i,j=1

1

|̂~ri − ~̂rj|
,

vext(~r) =

Nnuclei
∑

α=1

Zα

|~r − ~Rα(t)|
+ vfield(r, t) .
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Time-dependent and time-independent pictures

Ĥ(t) = Ĥ0 + V̂(t)

Time-independent picture: Solve the time-independent
Schrödinger equation for as many states “as needed”:

Ĥ0|ΨK〉 = EK |ΨK〉 .

If the perturbation is small, use the {ΨK , EK} basis set as departing
point for perturbation theory. For most properties, no explicit
propagation is needed.
If the perturbation is large, propagate the td Schrödinger equation
in the {ΨK , EK} basis set.

Time-dependent picture: propagate explicitly Schrödinger’s eq.:

i
d
dt
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉 ,

Ψ(t = 0)〉 = |Ψinitial〉 .
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Why extending ground-state DFT?

Many interesting properties of atoms, molecules and solids can
be obtained from the knowledge of their total energies at their
ground state.
E.g.: equilibrium lattice constants of solids, geometrical
arrangements of molecules, phonons or vibrational modes,
activation barriers for chemical reactions, . . .

But we also need to know how a quantum mechanical system
responds to external perturbations ⇒ response properties.
E.g.: linear and non-linear optical properties (polarizabilities,
photo-absorption . . . ), magnetic susceptibilities, photoemission,
. . .
These properties require the knowledge of not only the ground
state of some electronic Hamiltonian, but also excited states, and
transition matrix elements between them.
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Why extending ground-state DFT?

Example: dynamical polarizability.

Electric field, dipolar approximation:

E(r, t) = E0(t)ẑ .

v(r, t) = −E0(t)z .

Ground-state electric dipole of a molecule:

Z0 = −e〈Ψ0|Ẑ|Ψ0〉 .

Problem: how does the irradiation of a molecule with a weak
electric field affects the electric dipole?

Z(t) = 〈Ψ(t)|[−eẐ]|Ψ(t)〉 = Z0 + δZ(t)
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Why extending ground-state DFT?

We can expand the Fourier transform of δZ(t), δZ(ω), in a power
series of the Fourier transform of the field strength, E0(ω):

δZ(ω) = αzz(ω)E0(ω) + O(E2
0)

The first order coefficient is called the dipole polarizability:

αzz(ω) =
δZ(ω)

E0(ω)
.

The polarizability has many properties and applications; e.g. it
determines the photo-absorption cross section through a simple
relationship:

σzz(ω) =
4πω

c
ℑ[αzz(ω)]
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Why extending ground-state DFT?

Working in the “time-independent” picture, one can obtain αzz

directly from the unperturbed ground and excited states, through
the so-called “sum-over-states” (SOS) formula.

αzz(ω) =
e2

~

∑

K

|〈ΨK |Ẑ|Ψ0〉|2
[

1
−ω + ωK − iη

+
1

ω + ωK + iη

]

.

This is obtained directly from time-dependent perturbation theory.

In the time-dependent picture, one can propagate explicitly, and
apply the formula:

αzz(ω) =
δZ(ω)

E0(ω)
.
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Why extending ground-state DFT?

Let us rewrite this in a more “density-functional” language:

nσ(r, t) = 〈Ψ(t)|
N

∑

k=1

δ(r̂i − r)δσσk |Ψ(t)〉

If we apply a small perturbation δvσ(r, t),

δnσ(r, ω) =
∑

σ′

∫

d3rχσσ′ (r, r′, ω)δvσ(r′, ω) .

The object χσσ′ (r, r′, ω) is the response function of the system.
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Why extending ground-state DFT?

The polarizability is related to the response function through:

αij(ω) = −
∫ ∫

d3rd3r′xiχ(r, r′, ω)x′j .

The response functions contain all the information that is
necessary to predict the reaction of a system to any external
perturbation.

Directly from its definition, it can be seen that the response
function is a functional of the spin density:

χσσ′(r, r′, ω) =
δnσ(r)
δvσ′(r′)

.
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Why extending ground-state DFT?

Another example: interaction of very intense electromagnetic fields
with atoms or molecules, and generation of high harmonics.

If the perturbation is not weak, the study cannot be made
perturbatively.

From the explicit propagation of Schrödinger equation, we can
get the evolution of the dipole moment in time:

D(t) = −e〈Ψ(t)|R̂|Ψ(t)〉 ,

which can be written in terms of the density alone:

D(t) = −e
∫

d3r n(r, t) r .
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Why extending ground-state DFT?

The atom/molecule re-emits part of the energy that it receives;
the emission spectrum can be approximated as:

H(ω) ∝ |
∫

dteiωt d2

dt2
D(t)|2
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Why extending ground-state DFT?

Summarizing: some important properties are, intrinsically,
“excited-states properties”:

αzz(ω) =
e2

~

∑

K

|〈ΨK |Ẑ|Ψ0〉|2
[

1
−ω + ωK − iη

+
1

ω + ωK + iη

]

.

H(ω) ∝ |
∫

dteiωt d2

dt2
D(t)|2

Everything is a functional of the ground-state density, including
excited states, excited states transition, etc. So “standard” DFT
should be enough. . .

In practice, those functionals are unknown, and therefore it is
better to look for an alternative theory.
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The time-dependent one-to-one mapping

System S: Ĥ = T̂ + Ŵ + V̂(t)

Ŵ = 1
2

P

i 6=j
1
r̂ij

is the electronic interaction.

V̂(t) =
P

i v(r̂i, t) is the external field seen by the electrons.

|Φ(t = 0)〉 = |Φ0〉 ⇒ n(~r, t) = 〈Φ(t)|n̂(~r)|Φ(t)〉 .

System S′: Ĥ′ = T̂ + Ŵ ′ + V̂ ′(t)

Ŵ′ = 1
2

P

i 6=j w′(r̂ij) is a fictitious electronic interaction.

V̂(t) =
P

i v(r̂i, t) is a fictitious external field.

|Φ(t = 0)〉 = |Φ0〉 ⇒ n(~r, t) = 〈Φ(t)|n̂(~r)|Φ(t)〉 .
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The time-dependent one-to-one mapping

Question: Given Ŵ ′, is there any v′(~r, t) such that:

n′(~r, t) = 〈Φ′(t)|n̂(~r)|Φ′(t)〉 = n(~r, t) ?

Answer: Yes, and it is unique.

[R. van Leeuwen, Phys. Rev. Lett. 82 3863 (1999).]
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The Runge-Gross theorem, and the TDKS system

Now assume that W ′=W.

v′(~r, t) = v(~r, t) obviously, but the theorem also tells us that it is
unique:
There exists a unique relationship between time-dependent
densities and external potentials.
E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).

And therefore, any property of the system can be written, in
principle, as a functional of the time-dependent density.
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The Runge-Gross theorem, and the TDKS system

And now assume that W ′=0. I.e., we have a non-interacting
system.

There exists a potential v′(~r, t) for this non-interacting system
such that it reproduces the density of the interacting system.

This is the so-called time-dependent Kohn-Sham potential,
vKS(~r, t). The evolution of the non-interacting system may be
easily obtained by propagating single-particle equations (i.e.
Runge-Gross or td Kohn-Sham equations):

i
∂

∂t
ϕi(~r, t) = −1

2
∇2ϕi(~r, t) + vKS(~r, t)ϕi(~r, t) .

ϕi(~r, t = 0) = ϕ0
i (~r)
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Retrieval of observables in TDDFT

The density of the real, interacting system, may be retrieved from
the single-particle orbitals that solve the auxiliary, non-interacting
system:

n(~r, t) =

N
∑

i=1

|ϕi(~r, t)|2 .

The expectation value of any observable Q̂(t) is a unique
functional of the time-dependent density by virtue of the
Runge-Gross theorem:

Q(t) ≡ 〈Q(t)〉 ≡ Q(t)[n] .

For example, the dipole-dipole 1st order dynamical polarizability
would be:

ασµ[n](ω) = − 1
Eµ(ω)

∫

d3rrσδn(~r, ω) .
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d3rrσδn(~r, ω) .
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But...

RG is an existence theorem that is non-constructive: we do not
know vKS.

As in gs DFT, a smaller unknown part may be isolated:

vKS(~r, t) = v(~r, t) + uHartree[n](~r, t)+vxc[n](~r, t) ,

Involking the so-called “adiabatic approximation”, one can use
the GS functionals:

Axc[n] =

∫ tf

t0

dτExc[nτ ] ; (nτ (~r) = n(~r, τ)) .

vxc(~r, t) =
δAxc

δn(~r, t)
.

However, strong-field phenomena have proven to be especially
demanding in terms of the xc approximations. For many
purposes, non-adiabatic approximations are probably needed.
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But...

Yet another problem: not all observables are explicit functionals
of the td density. Most of them are unknown and have to be
approximated. For example, the ionization probabilities:

Ip = 1− lim
t→∞

∑

i∈[BoundStates]

|〈Ψ(t)|Ψi〉|2 .

How can write 〈Ψ(t)|Ψi〉 in terms only of the density?
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Example: propagation for problems in the non-linear
regime

For large external perturbations (non-linear, or non-perturbative
regime), one can directly propagate in time the TDKS equations. This
permits, to obtain, e.g., harmonic spectra:

σemission∝ |
∫

dteiωt d
dt2

d[n](t)|2 ,

where d[n](t) is the system dipole moment: d[n](t) =
∫

d3rn(~r)(t)x .
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Polarizability from real-time propagations

We “kick” an atom/molecule with a sudden electric perturbation:

E(t) = E0δ(t)ẑ ⇒

E(ω) = E0ẑ

If we calculate the evolution of the variation of the dipole
moment, and obtain its Fourier transform, δZ(ω), we can easily
obtain the dynamical polarizability:

αzz(ω) =
δZ(ω)

E0
.
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Polarizability from real-time propagations

The effect of this perturbation on the Kohn-Sham system is a
phase shift at time zero:

ϕi(~r, t = 0+) = eiE0zϕGS
i (~r) .

The evolution, afterwards, can be following by propagating the td
Kohn-Sham equations with zero field:

i
∂

∂t
ϕi(~r, t) = −1

2
∇2ϕi(~r, t) + vKS(~r, t)ϕi(~r, t) .

We retrieve the density. . .

n(~r, t) =
N

∑

i=1

|ϕi(~r, t)|2 .
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Polarizability from real-time propagations

Calculate the variation of the dipole moment. . .

δZ(t) =

∫

d3rn(~r, t)z − Z0

Fourier transform. . .

δZ(ω) =

∫

dteiωtδZ(t) ,

And we are done!

αzz(ω) =
δZ(ω)

E0
.
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Example: absorption spectrum of benzene
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Linear Response TDDFT

If we assume small perturbations, one can derive a linearized
form of the TDKS equations: the response density is a linear
functional of the perturbation.

The translation of the linear response theory formalism to TDDFT
leads to a tractable set of equations that permits to obtain:

Excitation energies, ωI = EI − E0.
Transition matrix elements, oscilatory strengths – corresponding to
transitions between the ground state and the excited states.

It requires the second functional derivative of the exchange and
correlation functional: the so-called kernel:

fxc(~rt,~r′t) =
δvxc(~r, t)
δn(~r′, t′)

.
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Linear Response TDDFT

δnσ(r, ω) =
∑

σ′

∫

d3rχσσ′ (r, r′, ω)δvσ′(r′, ω) .

δnσ(r, ω) =
∑

σ′

∫

d3rχKS
σσ′ (r, r′, ω)δvKS

σ′ (r′, ω) .

δvKS
σ

(r′, ω) = δvσ(r, ω)+

∫

d3r′
n(r)

|r′ − r|+
∑

σ′

∫

d3r′fxc(r, r′, ω)δnσ′(r′, ω) .

χσ,σ′(r, r′, ω) = χKS
σ,σ′(r, r′, ω) +

∑

τ,τ ′

∫

d3xd3x′χσ,τ (r, x, ω)

[

1
|x − x′| + fxc(x, x′, ω)

]

χτ ′,σ′(x′, r′, ω)
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Linear Response TDDFT

It is better to rewrite all this. . .

ΩFI = ΩIFI

The dimension of the matrix is the number of pairs of
occupied-unoccupied ground-state Kohn-Sham eigenstates (iaσ), for
each spin component σ.

Ωiaσ,jbµ = δijδabδσµ(εaσ − εiσ)2 + 2
√

εaσ − εiσKiaσ,jbµ

√

εbσ − εjσ

Kiaσ,jbµ = 〈ϕiσϕjµ|
1

|r − r′| + fxc.σµ(r, r′)|ϕaσϕbµ〉
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