
1

Profiling and Debugging Tools

Karl W. Schulz

Texas Advanced Computing Center
The University of Texas at Austin

UT/Portugal Summer Institute Training
Coimbra, Portugal

July 17, 2008

Outline

•  General (Analysis Tools)
•  Listings & Reports
•  Timers
•  Profilers (gprof, tprof, Tau)
•  Hardware performance analysis (PAPI)
•  Trace Tools (Paraver, ITC/ITA, KOJAK)
•  mpiP
•  Debugging (gdb, DDT)

2

Analysis Tools
•  Determine the TIME spent in each

“part” (subroutines, functions or even blocks)
of your code.

•  Within the most time-consuming sections
determine if optimization will improve
performance.

•  General techniques for analyzing code:
–  Compiler reports and listings
–  Profiling
–  Hardware performance counters

Listings & Reports (Compiler/Loader)

•  Compilers will optionally generate
optimization reports & listing files.

•  Use the Loader Map to determine what
libraries you have loaded.

3

Listings & Reports (Compiler/Loader)

•  IA32/EM64T:
–  <compiler> -Minfo=time,loop,inline,sym… {(pgi)}
–  <compiler> -opt-report {optimization, (Intel)}
–  <compiler> -S {listing (Intel)}

Timers: Package

 /usr/bin/time –p ./a.out Time for a.out execution.
 real 1.54 Output (in seconds).
 user 0.51
 sys .73

The time command is available on most Unix systems.
It times the execution of a process and its children.

e.g. for interactive batch, execution time of mpirun (and a.out):
Bourne shell: /usr/bin/time -p ibrun ./a.out args > out 2>&1
C shell: /usr/bin/time -p ibrun ./a.out args >& out

4

Types of performance analysis
information

•  Wall clock/CPU time
spent on each function

•  HW counters (e.g.,
cache misses, FLOPs)

Tools:
1.  profiler
2.  profile visualizer
3.  API to read/display

HW counter info

•  trace file (raw)
•  timeline

  state of thread/process
  communication
  predefined user events

Tools:
1.  trace generator
2.  instrumentation API
3.  tool for reading/

interpreting trace files
4.  visualizer

Timers: Code Section

Routine Type Resolution
(usec)

OS/Compiler

times user/sys 1000 Linux/AIX/IRIX/
UNICOS

getrusage wall/user/sys 1000 Linux/AIX/IRIX

gettimeofday wall clock 1 Linux/AIX/IRIX/
UNICOS

rdtsc wall clock 0.1 Linux

read_real_time wall clock 0.001 AIX

system_clock wall clock system
dependent

Fortran 90 Intrinsic

MPI_Wtime wall clock system
dependent

MPI Library (C &
Fortran)

5

Timers: Code Section

external x_timer double x_timer(void);
real*8 :: x_timer …
real*8 :: sec0, sec1, tseconds double sec0, sec1, tseconds;
… …
sec0 = x_timer() sec0 = x_timer();
 …Fortran Code …C Codes
sec1 = x_timer() sec1 = x_timer();
tseconds = sec1-sec0 tseconds = sec1-sec0

The times, getrussage, gettimeofday, rdtsc, and
read_real_time timers have been packaged into a
group of C wrapper routines (also callable from Fortran).

http://www.tacc.utexas.edu/services/userguides/porting/#timers

X = {one of rusage, gtod, rdtsc, rrt}

Profilers: gprof (instrumentation)

 <compiler> -g –p prog.<x>
 gprof <executable> gmon.out

ifort –g –p prog.f90
./a.out
gprof ./a.out gmon.out or gprof

-g provides more info
 on intrinsics & libs

a.out & gmon.out
are defaults

generates gmon.out

E.G.

6

Profilers: Example Code

subz

subcc

 main

subc suba

subaa

2 calls 2 calls

20 calls 1 call

42 calls total

Call Graph

0.6s/call

6.9s/call 3.5s/call

0.4s/call

3.5s/call

 _start

•  Program Structure

 subroutine subaa(n,a,b,c)
 ...
 do i = 1,20
 ...
 call subz(n,a,b,c)
 end do
 end

 subroutine subcc(n,a,b,c)
 ...
 call subz(n,a,b,c)
 end

 subroutine subz(n,a,b,c)
 ...
 end

 program prof1
 ...
 do i = 1,2
 call suba(n,a,b,c)
 enddo
 do i = 1,2
 call subc(n,a,b,c)
 enddo
 end

 subroutine suba(n,a,b,c)
 ...
 call subaa(n,a,b,c)
 end

 subroutine subc(n,a,b,c)
 ...
 call subcc(n,a,b,c)
 end

Code Outline

Profiler Example: gprof (output)
•  A common Unix profiling tool is gprof. Compiler options and

libraries provide wrappers for each routine call (mcount), and
periodic sampling the program counter (0.01 sec).

 % cumulative self self total
 time secs secs calls ms/call ms/call name
 86.21 145.6 145.6 42 3468 3468 subz_
 8.18 159.4 13.8 2 6910 76262 subaa_
 4.10 166.4 6.9 2 3465 6933 subcc_
 0.72 167.6 1.2 2 610 76872 suba_
 0.52 168.5 0.88 2 440 7372 subc_
 0.26 168.9 0.44 2 440 168930 main
 0.01 168.9 0.01 1 write

7

Profiler Example: gprof (call graph)

granularity: each sample hit covers 4 byte(s)
 for 0.01% of 168.94 seconds
index % time self children called name
 0.44 168.49 1/1 _start [2]
[1] 100 0.44 168.49 1 main [1]
 1.22 152.52 2/2 suba_ [3]
 0.88 13.87 2/2 subc_ [6]

 1.22 152.52 2/2 main [1]
[3] 91 1.22 152.52 2 suba_ [3]
 13.82 138.70 2/2 subaa_ [4]

 13.82 138.70 2/2 suba_ [3]
[4] 90 13.82 138.70 2 subaa_ [4]
 138.70 0.00 40/42 subz_ [5]

Profiler Example: gprof (output cont.)

 6.94 0.00 2/42 subcc_ [7]
 138.70 0.00 40/42 subaa_ [4]
[5] 86 145.64 0.00 42 subz_ [5]

 0.88 13.87 2/2 main [1]
[6] 8 0.88 13.87 2 subc_ [6]
 6.93 6.94 2/2 subcc_ [7]

 6.93 6.94 2/2 subc_ [6]
[7] 8 6.93 6.94 2 subcc_ [7]
 6.94 0.00 2/42 subz_ [5]

8

Profiling Parallel Programs (gprof)

mpif90 -gp prog.f90

setenv GMON_OUT_PREFIX gout.*

Submit parallel job for executable
(in this case named a.out)

gprof -s gout.*

gprof a.out gmon.sum

 Instruments code

 Forces each task to produce a
gout.<pid>

 Produces gmon.out trace file

 Combines gout.<pid> files into
gmon.sum file

 Reads executable (a.out) &
gmon.sum, report sent to
STDOUT

PAPI Implementation
Tools

PAPI Low Level
PAPI High Level

Hardware Performance Counter

Operating System

Kernel Extension

PAPI Machine
 Dependent Substrate Machine

Specific
Layer

Portable
Layer

9

PAPI Performance Monitor

•  Provides high level counters for events:
–  Floating point instructions/operations,
–  Total instructions and cycles
–  Cache accesses and misses
–  Translation Lookaside Buffer (TLB) counts
–  Branch instructions taken, predicted, mispredicted

•  PAPI_flops routine for basic performance analysis
–  Wall and processor times
–  Total floating point operations and MFLOPS
 http://icl.cs.utk.edu/projects/papi

•  Low level functions are thread-safe, high level are not

PAPI Preset Events

•  Proposed standard set of events deemed
most relevant for application performance
tuning

•  Defined in papiStdEventDefs.h
•  Mapped to native events on a given platform

–  Run tests/avail to see list of PAPI preset events
available on a platform

10

High-level Interface

•  Meant for application programmers wanting
coarse-grained measurements

•  Not thread safe
•  Calls the lower level API
•  Allows only PAPI preset events
•  Easier to use and less setup (additional code)

than low-level

High-level API

•  C interface
PAPI_start_counters
PAPI_read_counters
PAPI_stop_counters
PAPI_accum_counters
PAPI_num_counters
PAPI_flips
PAPI_ipc

•  Fortran interface
PAPIF_start_counters
PAPIF_read_counters
PAPIF_stop_counters
PAPIF_accum_counters
PAPIF_num_counters
PAPIF_flips
PAPIF_ipc

11

Low-level Interface

•  Increased efficiency and functionality over the
high level PAPI interface

•  About 40 functions
•  Obtain information about the executable and

the hardware
•  Thread-safe
•  Fully programmable
•  Callbacks on counter overflow

TAU Performance Toolkit

•  Tuning and Analysis Utilities (11+ year project effort)
–  http://www.cs.uoregon.edu/research/paracomp/tau/

•  Performance system framework for scalable parallel and
distributed high-performance computing

•  Targets a general complex system computation model
–  Nodes / Contexts / Threads
–  Multi-level: system / software / parallelism
–  Measurement and analysis abstraction

•  Integrated toolkit for performance instrumentation,
measurement, analysis, and visualization
–  Portable performance profiling and tracing facility
–  Open software approach with technology integration

12

TAU Performance System Architecture

EPILOG

Paraver

TAU Measurement Options
•  Parallel profiling

–  Function-level, block-level, statement-level
–  Supports user-defined events
–  TAU parallel profile data stored during execution
–  Hardware counts values
–  Support for multiple counters
–  Support for callgraph and callpath profiling

•  Tracing
–  All profile-level events
–  Inter-process communication events
–  Trace merging and format conversion

13

TAU Instrumentation

•  Manually using TAU instrumentation API
•  Automatically using

–  Program Database Toolkit (PDT)
–  MPI profiling library
–  Opari OpenMP rewriting tool

•  Uses PAPI to access hardware counter data

Program Database Toolkit (PDT)
•  Program code analysis framework for developing

source-based tools
•  High-level interface to source code information
•  Integrated toolkit for source code parsing, database

creation, and database query
–  commercial grade front end parsers
–  portable IL analyzer, database format, and access API
–  open software approach for tool development

•  Target and integrate multiple source languages
•  Used by TAU to build automated performance instrumentation

tools

14

TAU Analysis

•  Parallel profile analysis
–  Pprof

•  parallel profiler with text-based display
–  ParaProf

•  Graphical, scalable, parallel profile analysis and display

•  Trace analysis and visualization
–  Trace merging and clock adjustment (if necessary)
–  Trace format conversion (SDDF, VTF, Paraver)
–  Trace visualization using Intel Trace Analyzer

(Pallas VAMPIR)

PDT is used to instrument your code.

Replace mpicc and mpif90 in make files with tau_f90.sh and tau_cc.sh

But it is necessary to specify all the components that will be used in the
 instrumentation (mpi, openmp, profiling, counters [PAPI], etc. But these come in
 a limited combination.

Combinations: First determine what you want to do (profiling, PAPI counters,
 tracing, etc.) and the programming paradigm (mpi, openmp), and the compiler.
 PDT is a require component:

PAPI
Callpath
…

MPI
OMP
…

intel
pgi
gnu

PDT
hand-
code

Collectors Compiler: Parallel
Paradigm Instrumentation

TAU Instrumentation

15

TAU: Instrumentation

•  You can view the available combinations are made known
to the compiler wrapper through the TAU_MAKEFILE
environment variable. For instance, the PDT instrumention
(pdt) for the Intel compiler (icpc) for MPI (mpi) is set with this
command:

–  setenv TAU_MAKEFILE /…/Makefile.tau-icpc-mpi-pdt
• 

Other run-time and instrumentation options are set through
TAU_OPTIONS. For verbose:

–  setenv TAU_OPTIONS ‘-optVerbose’
• 

ParaProf (NAS Parallel Benchmark – LU)
node,context, thread Global profiles Routine

 profile
 across all
 nodes

Event legend

Individual profile

16

TAU Pprof Display

TAU Usage for Optimization/Debugging

32 Processor Case:
 Baseline WRF 2.1.1 source
 TI-06 Standard Case
 Restart file creation included

Large amount of
 Bcast traffic

17

Initial TAU Profiling With I/O Included

TAU used to generate
 callpath. These routines
 were tracked back to the
 restart file creation which
 inflates Bcast calls.

Altered WRF to disable output
 file creation.

Profiling Analysis

•  Typical Performance Analysis Goals
–  Identify hotspot candidates for further study and

optimization potential
–  Test optimization changes to verify usefulness
–  Floating-point improvements aimed at reducing

overall wall-clock run time (but may potentially
reduce scalability)

–  MPI improvements aimed at reducing MPI Idle
time and improve scalability

18

Example TAU Profiling Results

Standard, 32 Procs Large, 32 Procs

The computational modules in module_small_step_em and
 module_advect_em are top contributors in both the standard and large
 cases (and are independent of microphysics).

Floating Point Optimizations

•  Looking at the source code, several opportunities
were identified for loop fusion modifications in:
–  MODULE_SMALL_STEP_EM::advance_w, advance_uv,

sumflux, advance_mu_t
–  MODULE_ADVECT_EM::advect_v

•  Loop fusion optimizations were tested by monitoring
L1 data-cache misses with and without code changes

•  Code change optimizations increased data reuse in
cache and improved data prefetching.

19

Floating Point Optimizations
DO k=1, k_end
 DO i=i_start, i_end
 t_2ave(i,k,j)=.5*((1.+epssm)*t_2(i,k,j)+(1.-epssm)*t_2ave(i,k,j))
 t_2ave(i,k,j)=(t_2ave(i,k,j)-mu1(i,j)*t_1(i,k,j))

 /(muts(i,j)*(t0+t_1(i,k,j)))
 ENDDO
ENDDO
DO k=2,k_end+1
 DO i=i_start, i_end
 wdwn(i,k)=.5*(ww(i,k,j)+ww(i,k-1,j))*rdnw(k-1) &
 *(ph_1(i,k,j)-ph_1(i,k-1,j)+phb(i,k,j)-phb(i,k-1,j))
 rhs(i,k) = dts*(ph_tend(i,k,j) + .5*g*(1.-epssm)*w(i,k,j))
 ENDDO
ENDDO

DO k=1, k_end
 DO i=i_start, i_end
 t_2ave(i,k,j)=.5*((1.+epssm)*t_2(i,k,j)+(1.-epssm)*t_2ave(i,k,j))
 t_2ave(i,k,j)=(t_2ave(i,k,j)-mu1(i,j)*t_1(i,k,j)) &
 /(muts(i,j)*(t0+t_1(i,k,j)))
 wdwn(i,k+1)=.5*(ww(i,k+1,j)+ww(i,k,j))*rdnw(k) &
 *(ph_1(i,k+1,j)-ph_1(i,k,j)+phb(i,k+1,j)-phb(i,k,j))
 rhs(i,k+1) = dts*(ph_tend(i,k+1,j) + .5*g*(1.-epssm)*w(i,k+1,j))
 ENDDO
ENDDO Example of Code Optimization

(in advance_w)

Original
Code

Optimized
Code

Floating Point Optimizations
32 Processors, L1 Data Cache Misses

 (DCMs)
Original Code Optimized Code

Combined effect of all loop fusion modifications was a
 reduction of ~2E9 L1 DCMs over the entire run.

20

Standard Debuggers

•  The standard command line debugging tool is gdb in Linux. You
can use these debuggers for programs written in C, C++ and
Fortran.

•  For effective debugging a couple of commands need to be
mastered – set breakpoints, display the value of variables, set
new values, and single step through a program. Less used
commands can be learned as they become necessary.

•  A High Level interface allows users to start, stop and record
events. (Provides a “standard” set of controls)

•  A Low Level interface allows developers to manipulate events
and variables.

Debugging Basics

•  For effective debugging a couple of
commands need to be mastered:
–  show program backtraces (the calling history up to

the current point)
–  set breakpoints
–  display the value of individual variables
–  set new values
–  step through a program

21

Debugging Basics

•  A breakpoint is a pseudo instruction that the user can
insert at any place into the program during a
debugging session

•  Conceptually, the execution is controlled by the
debugger and the debugger will interpret the
breakpoints

•  When execution crosses a breakpoint, the debugger
will pause program execution so that you can:
–  inspect variables,
–  set or clear breakpoints, and
–  continue execution

Debugging Basics

•  The notion of a conditional breakpoint also exists in which
additional logic can be associated with the breakpoint

•  When a conditional breakpoint is crossed during execution, the
program will pause only if the breakpoint's break condition holds

•  Example break conditions:
–  A given expression is true
–  The breakpoint has been crossed N times ("hit count") - this is very

handy when you know something bad is happening on a particular
iteration

–  A given expression has changed its value

22

Running GDB

•  gdb is started directly from the shell
•  You can include the name of the program to be

debugged, and an optional core file:
–  gdb
–  gdb a.out
–  gdb a.out corefile

•  gdb can also attach to a program that is already
running; you just need to know the PID associated
with the desired process
–  gdb a.out 1134

useful if an application seems to be slow or
 stuck and you want to see what it is doing
 currently

spawns a new instance of ./a.out

examines trapped state in corefile

gdb Basics

•  Common commands for gdb:
–  run - starts the program; if you do not set up any breakpoints

the program will run until it terminates or core dumps -
program command line arguments can be specified here

–  print - prints a variable located in the current scope
–  next - executes the current command, and moves to the next

command in the program
–  step - steps through the next command. Note: if you are at a

function call, and you issue next, then the function will
execute and return. However, if you issue step, then you will
go to the first line of that function

–  break - sets a break point.
–  continue - used to continue till next breakpoint or termination

Note: shorthand notations exist for most of
 these commands: eg. ‘c’ = continue

23

gdb Basics

•  More commands for gdb:
–  list - show code listing near the current execution

location
–  delete - delete a breakpoint
–  condition - make a breakpoint conditional
–  display - continuously display value
–  undisplay - remove displayed value
–  where - show current function stack trace
–  help - display help text
–  quit - exit gdb

mpiP: dynamic MPI Profiling

•  Scalable Profiling library for MPI applications
•  Lightweight
•  Collects statistics of MPI functions

–  uses communication only during report generation
–  less overhead & much less data than tracing tools.

•  http://mpip.sourceforge.net

24

Usage, Instrumentation, Analysis
•  How to use

–  No recompiling required
–  Profiling gathered in MPI profiling layer

•  Link Static Library before default MPI libraries
 -g -L${TACC_MPIP_LIB} -lmpiP -lbfd -liberty -lintl –lm

 mpicc and mpif90 cmd line libs are loaded first.
•  What to analyze

–  Overview of time spent in MPI communication during
the application run

–  Aggregate time for individual MPI call

Control
•  External Control

–  Set MPIP environment variable (threshold,callsite depth)
•  E.g. setenv MPIP ‘-t 10 –k 2 export MPIP= ‘-t 10 –k 2’

•  Limiting to specific code blocks
–  MPI_Pcontrol(#)

Pcontrol Arg Behavior

0 Disable profiling.

1 Enable Profiling.

2 Reset all callsite data.

3 Generate verbose report.

4 Generate concise report.

MPI_Pcontrol(2);
MPI_Pcontrol(1);
 MPI_Abc(…);
MPI_Pcontrol(0);

call MPI_Pcontrol(2)
call MPI_Pcontrol(1)
 call MPI_Abc(…)
call MPI_Pcontrol(0)

F90

C

25

mpiP: output
•  MPI-Time: wall-clock time for all MPI calls within application time

•  MPI callsites within application

•  Aggregation time (top 20 MPI callsites)

•  Message size of top 20 callsites

Better view with mpipview

26

mpipview - output

Call “Sites”

27

Statistics

Message Size

28

Debugging: DDT

•  Works with C, C++ and Fortran Compilers
•  Available on my different platforms.

(IBM, CRAY, AMD, INTEL, SUN, SGI, …)
•  Supports OpenMP & MPI

(and hybrid paradigm)
•  Support 32- and 64-bit architectures
•  Simple to use (intuitive)

Instrumenting Code and Running TotalView
% module load ddt {sets environment variables}
% module help ddt {foolow instructions}
% ifort –g prog.f90
% ddt &

Interactive, parallel, symbolic debuggers with GUI interface

menu bar
process controls
process groups
window

project navigator
window

code
window

variable
window

evaluate
window

parallel stack view
and output window

status bar

