Hybrid Programming with
OpenMP and MPI

Karl W. Schulz

UT/Portugal Summer Institute Training
Coimbra, Portugal
July 17, 2008

rrrrrrrrrrrrr

TAGCG Texas Advanced Computing Center TEXAS

Hybrid Outline

Distributed and Shared Memory Systems
Why Hybrid Computing

Numa Controls (batch scripts)

Motivation for Hybrid Computing

Modes of Hybrid Computing
— MPI initialization
— Funneled, Serialized and Multi-Threaded

TTTTTTTTTTTTT

TACG 2 TEXAS

Distributed & Shared Memory

« Combines distributed memory parallelization
with on-node shared memory parallelization

» Largest systems now employ both
architectures

MEMORY MEMORY MEMORY MEMORY
[aNeNeNe} [aNeNeNe] [aNeNeNe} [aNeNeNe} [aNeNeNe} o0 [aNeNeNe} [aNeNeNe}
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
cccc cccc cccc cccc cccc cccc cccc cccc
[aNeNeNe} [aNeNeNel [aNeNeNe} o000 ononoon o000 o000 o000
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
cccc CEICC cccc CTCC cccc CCICC cccc CTCC
NETWORK
THE UNIVERSITY OF
TACC : TEXAS

AT AUSTIN

Ranger System

» Shared Memory component is a “cache

coherent” SMP blade. Non uniform memory
access (NUMA) and state (cache coherence)
are the hallmarks of a global memory (within

a hierarchy).

* Distributed memory component is a network
of SMP blades. State(fulness) is maintained

by the program.

TACG

THE UNIVERSITY OF ﬁ
AT AUSTIN

Why Hybrid

Eliminates domain decomposition at node
(this can be a big deal, eg. factor of 16 for
Ranger)

Automatic coherency at node

Lower memory latency and data movement
within node

Can synchronize on memory instead of
barrier

TTTTTTTTTTT

TACGGC 5 TEXAS

Why Hybrld (cont 1)

» Only profitable if on-node aggregation of MPI

parallel components is faster as a single SMP
algorithm (or a single SMP algorithm on each
socket).

TTTTTTTTTTTTT

TACG 6 TEXAS

NUMA Operations

* Where do threads/processes and memory

allocations go?

» Default: Decided by policy when process exec’d
or thread forked, and when memory allocated.
Processes and threads can be rescheduled to
different sockets and cores.

* Scheduling Affinity and Memory Policy can be

changed within code with (sched_get/setaffinity,

get/set_memory_policy)

TACGGC

TEXAS "

AT AUSTIN

NUMA Operations (cont. 1)

« Affinity and Policy can be changed externally
through numactl at the socket and core level.

| Command: numactl <options> ./a.out |

2 3

cPU CPU cPU CPU

CPU CPU cPU CPU

1

cPU CPU cPU CPU

cPU CPU cPU CPU

1 0

Socket References

8,9,10,11 12,13,14,15

cPU CPU

CPU CPU

CPU CPU

1

CPU CPU

—o

1

CPU CPU

CPU CPU

CPU CPU

CPU CPU

4,5,6,7

0,1,2,3

Core References

TACG

THE UNIVERSITY OF v
AT AUSTIN

NUMA Operations (cont. 2)

lw

CPU CPU

N
—

CPU CPU

cpy

cPU

|

1

CPU CPU
L

cpy

cPU

—o

CPU CPU

Memory: Socket References

1o

MPI — local is best

SMP - Interleave best for large,
completely shared arrays

SMP - local best for private arrays
Once allocated, a memory structure’s

is fixed

THE UNIVERSITY OF

TACG TEXAS
NUMA Operations (cont. 3)
cmd arguments description
Only execute
e — N 0.1,2,3) process on cores

of this (these)
socket(s).

numactl

-l {no argument}

Allocate on
current socket.

Allocate round

numactl -i {0,1,2,3} robin (interleave)
on these sockets.
Allocate on this
_ 1{0,1,2,3} socket; fallback
numactl --preferred= .
select only one [to any other if
full .
Only allocate on
numactl -m {0,1,2,3} this (these)
socket(s).
12, Only execute
4,567, .
numactl -C process on this
ST, (these) Core(s)
12,13,14,15} :
THE UNIVERSITY OF
TAGGC TEXAS

AT AUSTIN

Hybrid Batch Script 16 threads

jOb script (Bourne shell)
#! -pe 1way 192

export OMP_NUM_THREADS=16
ibrun numactl —i all ./a.out

job script (c shel)
#! -pe 1way 192

setenv OMP_NUM_THREADS 16
ibrun numactl —i all ./a.out

TACGGC

THE UNIVERSITY OF
1"

TEXAS

AT AUSTIN

for mvapich2

Hybrid Batch Script 4 tasks, 4 threads/task

job script (Bourne shell)

#! -pe 4way 192

export OMP_NUM_THREADS=4

ibrun numa.sh

job script (C shell)
#! -pe 4way 32

setenv OMP_NUM_THREADS 4

ibrun numa.csh

numa.sh
#!/bin/bash
export MV2_USE_AFFINITY=0
export MV2_ENABLE_AFFINITY=0
export VIADEV_USE_AFFINITY=0

#TasksPerNode

TPN="echo $PE | sed 's/way//"
[!$TPN] && echo TPN NOT defined!
[!$TPN] && exit 1

socket=$(($PMI_RANK % $TPN))

numactl -N $socket -m $socket ./a.out

numa.csh
#!/bin/tcsh
setenv MV2_USE_AFFINITY 0
setenv MV2_ENABLE_AFFINITY O
setenv VIADEV_USE_AFFINITY O

#TasksPerNode

set TPN = ‘echo $PE | sed 's/way//"
if(! ${%TPN}) echo TPN NOT defined!
if(! ${%TPN}) exit 0

@ socket = $PMI_RANK % $TPN

numactl -N $socket -m $socket ./a.out

TACG

2 FEXAS

AT AUSTIN

MPI Rank Query

* Note that we needed to determine the MPI rank of
a particular thread of the MPI program to
use numactl

* This is very dependent on the MPI implementation
(and version dependent too)
- MVAPICH2: my rank=$PMI_RANK
- MVAPICHL: my rank=$MPIRUN_ RANK
- OpenMPI 1.2.6: my rank=$OMPI_MCA ns nds_vpid
- OpenMPI 1.3: my_ rank=$OMPI_COMM WORLD_RANK

THE UNIVERSITY OF

TACGGC) TEXASTF

Performance Impacts

+ Making good choices on processor and memory
affinity can have a dramatic impact on performance

« Even if you are not doing hybrid programming, you
should consider using specific affinity settings on
SMP compute nodes

* MPI stacks generally do the right thing with

when using all the cores available on a node

(but you should double check)

* They may not do anything with
though (and file cache can be an issue)

» Performance gains can be significant via inclusion

TACC b TEXAS

Performance Impacts: Affinity

4K Tasks, 2KA3 Geometry

“ No Affinity
~ With NUMA Affinity

Time Per Iteration (secs)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run Number

TACG i TEXASTF

Motivation

* Load Balancing
* Reduce Memory Traffic

CPU- and Memory-bound Applications

CPU-h .J//
P

toBLAS
—— Streams

Speedup

A
A
A
y 4
! 7
W
7
P ad
C

TTTTTTTTTTTTT

TACG ° LIRS

Modes of Hybrid Operation

1 MPI Task
Thread on each Core

4 MPI Tasks
4Threads/Task

16 MPI Tasks

1 MPI Tasks
16 Threads/Task

Master Thread of MPI Task

E MmPI Task on Core

«F Master Thread of MPI Task
Il Slave Thread of MPI Task

THE UNIVERSITY OF

TACG ! TEXAS
Example MxM C := AxB C; = Sum(a;*by)
11=0, 21=1, 12=3, 22=4
Task # Kernel Operation
t c:=(axb)+(axb)
0 0 :=(2x1)+(0x0)
1 1:=(3x1)+(1x0)
2 2 :=(0x2)+(2x3)
3 3:=(1x2)+(3x3)
4 MPI Tasks 4-threads
Local Memory Global Memory
C A B C A B
.. _ @ Each block maps . = [0[2 x
EE. X [E] to different task 113 1.3
. - AND .
shift+twrap: Right Ulp Blocks must be Also reduces memory traffic.
©E [0 0] “transferred” for Better cache reuse

= X second update.
mE

Each box is a task with local memory

C, is updated by 2 local mxm’s by each task.

Less Memory required
Less Memory Bandwidth
No MPI Overhead

More Cache Sharing

18

TACGGC

THE UNIVERSITY OF

TEXAS

AT AUSTIN

Hybrid Coding

Fortran

include ‘mpif.h’
program hybsimp

call MPI_Init(ierr)

call MPI_Comm_rank (...,irank,ierr)
call MPI_Comm_size (...,isize,ierr)

I Setup shared mem, comp. & Comm

#include <mpi.h>
int main(int argc, char **argv){
int rank, size, ierr, i;

ierr= MPI_Init(&argc,&argv(]);

ierr= MPI_Comm_rank (...,&rank);

ierr= MPI_Comm_size (...,&size);
//Setup shared mem, compute & Comm

ISOMP parallel do
doi=1,n
<work>
enddo
I compute & communicate

call MPI_Finalize(ierr)
end

#pragma omp parallel for
for(i=0; i<n; i++){
<work>
}

// compute & communicate

ierr= MPI_Finalize();

TACGGC

THE UNIVERSITY OF

TEXAS

AT AUSTIN

19

MPI2 MPI_Init_thread

Syntax:
call MPI_Init_thread(

irequired, iprovided, ierr)

int MPI_Init_thread(int *argc, char ***argy, int required, int *provided)
int MPI::Init_thread(int& argc, char**& argy, int required)

Support Levels

Description

MPI_THREAD_SINGLE

Only one thread will execute.

MPI_THREAD_FUNNELED

Process may be multi-threaded, but only main
thread will make MPI calls (calls are "funneled" to
main thread). Default

MPI_THREAD_SERIALIZE

Process may be multi-threaded, any thread can
make MPI calls, but threads cannot execute MPI
calls concurrently (all MPI calls must be
"serialized").

MPI_THREAD_MULTIPLE

Multiple threads may call MPI, no restrictions.

If supported, the call will return provided = required.
Otherwise, the highest level of support will be provided.

TACG

THE UNIVERSITY OF
20

TEXAS

AT AUSTIN

10

MPI Call through Master

 MPI_THREAD_FUNNELED

* Use OMP_BARRIER since there is no implicit
barrier in master workshare construct
(OMP_MASTER).

+ All other threads will be sleeping.

TACGGC

21

TEXAS "

AT AUSTIN

Funneling through Master

Fortra C
include ‘mpif.h’ #include <mpi.h>
program hybmas int main(int argc, char **argv){
int rank, size, ierr, i;
ISOMP parallel #pragma omp parallel
{
ISOMP barrier #pragma omp barrier
ISOMP master #pragma omp master
{
call MPI_<whatever>(...,ierr) ierr=MPI_<Whatever>(...)
ISOMP end master }
ISOMP barrier #pragma omp barrier
ISOMP end parallel }
end }
22

TACG

THE UNIVERSITY OF v
AT AUSTIN

MPI Call within Single

+ MPI_THREAD_SERIALIZED

* Only OMP_BARRIER at beginning, since

there is an implicit barrier in SINGLE
workshare construct (OMP_SINGLE).

+ All other threads will be sleeping.

* (The simplest case is for any thread to execute a single mpi call,

e.g. with the “single” omp construct. See next slide.)

TACGGC i

THE UNIVERSITY OF v
AT AUSTIN

Serialize through Single

Fortran
include ‘mpif.h’ #include <mpi.h>
program hybsing int main(int argc, char **argv){
call mpi_init_thread(MPI_THREAD_THREADED, int rank, size, ierr, i;
iprovided,ierr) mpi_init_thread(MPI_THREAD_THREADED,
ISOMP parallel iprovided)
#pragma omp parallel
ISOMP barrier {
ISOMP single #pragma omp barrier
#pragma omp single
call MPI_<whatever>(...,ierr) {
ISOMP end single ierr=MPI_<Whatever>(...)
}
ISOMP end parallel
end }
}

TACG “

TEXAS

AT AUSTIN

12

Overlapping Communication and Work

* One core can saturate the PCl-e €—>network
bus. Why use all to communicate?

« Communicate with one or several cores.
* Work with others during communication.
* Need at least MPI_THREAD FUNNELED

support.

» Can be difficult to manage and load balance!

TACGGC

25

TEXAS "

AT AUSTIN

Overlapping Communication and Work

Fortran

C

include ‘mpi.h’
program hybover

ISOMP parallel

if (ithread .eq. 0) then

call MPI_<whatever>(...,ierr)
else

<work>
endif

ISOMP end parallel
end

#include <mpi.h>
int main(int argc, char **argv){
int rank, size, ierr, i;

#pragma omp parallel
{
if (thread == 0){
ierr=MPI_<Whatever>(...)
}
if(thread 1= 0){
work

}

}

TACG

26

THE UNIVERSITY OF v
AT AUSTIN

Thread-rank Communication

* Can use thread id and rank in communication

* Next example illustrates technique in multi-
thread “ping” (send/receive) example.

TACG i TEXAS T

Thread-rank Communication

6a|l mpi_init_thread(MPI_THREAD_MULTIPLE, iprovided,ierr)
call mpi_comm_rank(MPI_COMM_WORLD, irank, ierr)
call mpi_comm_size(MPI_COMM_WORLD,nranks, ierr)

ISOMP parallel private(i, ithread, nthreads)

nthreads=OMP_GET_NUM_THREADS() Communicate between ranks. |
ithread =OMP_GET_THREAD_NUM()

call pwork(ithread, irank, nthreads, nranks...) | Threads use tags to differentiate. |
if(irank == 0) then ¥

call mpi_send(ithread,1,MPI_INTEGER, (1,|{thread,MPI_COMM_WORLD, ierr)
else

call mpi_recv(j,1,MPI_INTEGER, 0, ||thread,MPI_COMM_WORLD, istatus,ierr)
print*, "Yep, this is ",irank," thread ", ithread," | received from ", j
endif

ISOMP END PARALLEL
end

TACG i TEXAS T

14

Conclusion

» Hybrid codes can reduce communication and
memory requirements, support better cache
reuse, and reduce memory traffic.

* Hybrid computing introduces another parallel
layer.

» With 8-core and 16-core sockets on the way,
more effort will be directed toward hybrid
computing.

* Expect to see more multi-threaded libraries.

THE UNIVERSITY OF

TACGGC i TEXAS

¥

References

http://www.nersc.gov/nusers/services/training/classes/NUG/Jun04/
NUG2004 vyhe hybrid.ppt

Hybrid OpenMP and MPI Programming and Tuning (NUG2004),Yun
(Helen) He and Chris Ding, Lawrence Berkeley National Laboratory,
June 24, 2004.
http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/
node162.htm#Node162

www.tacc.utexas.edu/services/userguides/ranger {See numa section.}

T

TACG i TEXAS

¥

I/O -(Parallel and Otherwise)
on Large
Scale Systems

Dan Stanzione
Arizona State University

TTTTTTTTTTTTTTT

TACG TEXAS

Outline

What is Parallel [/O? Do I need it?
Cluster Filesystem Options

MPI I/O and ROMIO

Example striping schemes

TTTTTTTTTTTTT

TACC TEXAS

16

Parallel I/O in Data Parallel Programs

Each task reads a distinct partition of the input
data and writes a distinct partition of the
output data.

Each task reads its partition in parallel
Data is distributed to the slave nodes

Each task computes output data from input
data

Each task writes its partition in parallel

TTTTTTTTTTTTT

TACG TEXAS

What Are All These Names?

MPI - Message Passing Interface Standard
— Also known as MPI-1

MPI-2 - Extensions to MPI standard
— 1/0, RDMA, dynamic processes

MPI-IO - I/O part of MPI-2 extensions

ROMIO - Implementation of MPI-IO

— Handles mapping MPI-IO calls into communication
(MPI) and file 110

TTTTTTTTTTTTT

TACC TEXAS

17

Filesystems

» Since each node in a cluster has it's own disk,
making the same files available on each node
can be problematic

» Three filesystem options:
— Local
— Remote (eg. NFS)
— Parallel (eg. PVFS)

TACC TEXAS

Filesystems (cont.)

* Local - Use storage on each node's disk

— Relatively high performance

— Each node has different filesystem

— Shared datafiles must be copied to each node

— No synchronization

— Most useful for temporary/scratch files accessed
only by copy of program running on single node

— RANGER DOESN'T HAVE LOCAL DISKS

» This trend may continue with other large scale systems
for reliability reasons

* Very, very small RAMdisk (300MB)

TACC TEXAS

Filesystems(cont.)

* Remote - Share a single disk among all nodes
— Every node sees same filesystem
— Synchronization mechanisms manage changes
— "Traditional" UNIX approach
— Relatively low performance

— Doesn't scale well; server becomes bottleneck in
large systems

— Simplest solution for small clusters, reading/writing
small files

TACGGC TEXAS T

AT AUSTIN

Filesystems(cont.)

» Parallel - Stripe files across multiple disks on multiple
nodes

— Relatively high performance

— Each node sees same filesystem

— Works best for I/O intensive applications
— Not a good solution for small files

— Certain slave nodes are designated I/O nodes, local
disks used to store pieces of filesystem

TACC TEXAS

19

Using File Systems

Local File Systems

— EXTS3, /tmp

Network File Systems

— NFS, AFS

Parallel File Systems

— PVFS, LUSTRE, IBRIX,Panasas
I/O Libraries

— HDF, NetCDF, Panda

TACC TEXAS

Accessing Local File Systems

* 1/O system calls on compute nodes are
executed on the compute node

* File systems on the slave can be made
available to tasks running there and accessed
as on any Linux system

 Recommended programming model does not
assume that a task will run on a specific node

— Best used for temporary storage
— Access permissions may be a problem

TACC TEXAS

Accessing Network File Systems

Network file systems such as NFS and AFS
can be mounted by slave nodes

Provides a shared storage space for home
directories, parameter files, smaller data files

Can be a performance problem when many
slaves access a shared file system at once

Performance problems can be severe for a
very large number of nodes (100+)

Otherwise, works like local file systems

TTTTTTTTTTTTT

TACG TEXAS

Accessing Parallel File Systems

Distribute file data among many I/O nodes
(servers), potentially every node in the
system

Typically not so good for small files, but very
good for large data files

Should provide good performance even for a
very large degree of sharing

Critical for scalability in applications with large
I/O demands

Particularly good for data parallel model

TTTTTTTTTTTTT

TACC TEXAS

21

Example Application for Parallel I/O

TACC TEXAS

Issues in Parallel 1/0

» Physical distribution of data to I1/0 nodes
interacts with logical distribution of the 1/0
requests to affect performance

— Logical record sizes should be considered in
physical distribution

— 1/O buffer sizes depend on physical distribution and
number of tasks
» Performance is best with rather large requests

— Buffering should be used to get requests of 1MB or
more, depending on the size of the system

TACGGC TEXAS TP

/0 Libraries

« May make 1/O simpler for certain applications
— Multidimensional data sets
— Special data formats
— Consistent access to shared data
— "Out-of-core" computation

* May hide some details of parallel file systems
— Partitioning

» May provide access to special features

— Caching, buffering, asynchronous /O,
performance

TACC TEXAS

MPI-10

« Common file operations
— MPI File open();
— MPI_File close();
— MPI File read();
— MPI File write();
— MPI File read at();
— MPI File write at();
— MPI File read shared();
— MPI File write shared();
* Open, close are collective. The rest have collective counterparts;
add _all

TACC TEXAS

MPI_File_open

MPI File open(

MPI_Comm comm,

char *filename,

int amode,

MPI Info info,

MPI File *fh);
» Collective operation on comm

+ amode similar to UNIX file mode; a few extra MPI

possibilities

TAGC TEXAS T
MPI_File close
MPI File close(
MPI File *fh
) ;
TAGC TEXAS T

24

File Views

* File views supported
— MPI_File_set_view();

» Essentially, a file view allows you to change your
program's treatment of a file as simply a stream of
bytes, to viewing the file as a set of MPI_Datatypes

and displacements.

» Arguments to set view are similar to the arguments for

creating derived datatypes

TACGGC

TEXAS "

AT AUSTIN

MPI_File _read

MPI File read(
MPI File fh,
void *buf,
int count,
MPI Datatype datatype,
MPI Status *status

)i

TACG

THE UNIVERSITY OF v
AT AUSTIN

25

MPI|_File read at

MPI File read at(
MPI File fh,
MPI Offset offest,
void *buf,
int count,
MPI Datatype datatype,
MPI_ Status *status
)i
* MPI_File_read_at_all() is the collective
version

TACC TEXAS

Non-Blocking /O

MPI File iread();

MPI File iwrite();

MPI File iread at();

MPI File iwrite at();

MPI File iread shared();
MPI File iwrite shared();

TACC TEXAS

26

MPI_File_iread
MPI File iread(
MPI File fh,
void *buf,
int count,
MPI Datatype datatype,
MPI Request *request

)7

¢ Request structure can be queried to determine if

the operation is complete

TACGGC

TEXAS "

AT AUSTIN

Collective access

» The “shared” routines use a collective file pointer
» Collective routines also provided to allow each task to

read/write a specific chunk of the file:

— MPI File read_ordered(MPI_File fh, void *buf,
int count, MPI_Datatype type, MPI_Status

*st)
— MPI File write ordered()
— MPI File seek_ shared()
— MPI File read_all()
— MPI File write all()

TACG

THE UNIVERSITY OF v
AT AUSTIN

27

File Functions

—MPI File delete();

—MPI File set size();
—MPI File preallocate();
—MPI File get size();
—MPI File get group();
—MPI File get amode();
—MPI File set info();
—MPI File get info();

TACC TEXAS

ROMIO MPI-IO Implementation
MPI-10 Interface
ADIO Interface
ADIO_XFS === ADIO_PVFS
* Implementation of MPI-2 1/O specification

— Operates on wide variety of platforms

— Abstract Device Interface for /0 (ADIO) aids in porting
to new file systems

— Fortran and C bindings

» Successes
— Adopted by industry (e.g. Compaq, HP, SGI)
— Used at ASCI sites (e.g. LANL Blue Mountain)

TACC TEXAS

» Commodity components
— projectors, PCs
* Provide very high resolution
visualization
+ Staging application splits
frames’into a tile stream for
each visualization node

— Uses MPI-IO to access data from
PVFS file system

— Streams of tiles are merged into
movie files on visualization node

PVFS Servers

| Staging Node | ~| Display Node | —

| Staging Node | ~| Display Node | —

Tiled Display

TACGGC

TEXAS "

AT AUSTIN

Splitting Movie Frames into Tiles
* Hundreds of frames make up a single movie

* Each frame is stored in its own file in PVFS
* Frame size is 2532x1408 pixels

+ 3x2 display

+ Tile size is 1024x768 pixels (overlapped)

Tile 1 Tile 2

Tile 3

Tile6

TACG

THE UNIVERSITY OF v
AT AUSTIN

29

Obtaining Highest Performance

* To make best use of PVFS:

Use MPI-IO (ROMIO) for data access
Use file views and datatypes

Take advantage of collectives

Use hints to optimize for your platform

+ Simple, right :)?

TACGGC TEXAS T

AT AUSTIN

Trivial MPI-10 Example

» Reading contiguous pieces with MPI-IO calls
— Simplest, least powerful way to use MPI-IO
— Easy to port from POSIX calls
— Lots of I/O operations to get desired data

for (row = 0; row < 768; row++)

MPI File read_at

TACC TEXAS

30

Avoiding the VFS Layer
* UNIX calls go through VFS layer

* MPI-IO calls use Filesystem library directly
+ Significant performance gain

Read Performance

™
g
g

)
T TR
o @ % K B & &
2 8 8 8 8 38 B8

Aggregate Banduidth (MButes/sec

FS
k3

0 5 10 15 20 25 30 35
Number of Compute Nodes

TACC TEXAS

Why Use File Views?

» Concisely describe noncontiguous regions in a
file
— Create datatype describing region
— Assign “view” to open file handle

» Separate description of region from I/O operation
— Datatype can be reused on subsequent calls

» Access these regions with a single operation

— Single MPI read call requests all data

— Provides opportunity for optimization of access in MPI-10
implementation...

TACC TEXAS

Setting a File View
* Use MPI_Type_create_subarray() to define a
datatype describing the data in the file

» Example for tile access (24-bit data):

tiletype
tiletype

MPI_File set_view
tiTetype

MPI_File_read

TACGGC TEXAS T

AT AUSTIN

Noncontiguous Access in ROMIO

* ROMIO performs “data sieving” to
cut down number of I/O operations Holes
» Uses large reads which grab multiple Pl
noncontiguous pieces
X . Region desired by application
* Example, reading tile 1:

Region accessed with data sieving

. Requested data

Tile 2 Tile 3
I:I Additional data read

TACC TEXAS

Data Sieving Performance

* Reduces I/O operations from 4600+ to 6
+ 87% effective throughput improvement

* Reading 3 times as much data as necessary...

TACC TEXAST
Collective 1/O
* MPI-10 supports “collective” I/O calls (_all
suffix)

All processes call the same function at once
— May vary parameters (to access different regions)
More fully describe the access pattern as a
whole

— Explicitly define relationship between accesses
Allow use of ROMIO aggregation
optimizations

— Flexibility in what processes interact with I/O

servers
— Fewer, larger 1/O requests
TACC TEXASTF

33

Collective I/O Example
+ Single line change:

/* create datatype describing tile */

MPI_Type_create_ subarray(2, frame size, tile_size,
tile_offset, MPI_ORDER_C, rgbtype, &tiletype);

MPI_Type commit (&tiletype);

MPI_File_set_view(handle, header size, rgbtype,
tilétypée, “native”, MPI_INFO_NULL);

#if O

MPI_File read(handle, buffer, buffer_ size,
rgbtype, &status);

#endif

/* collective read */
MPI_File read_all(handle, buffer, buffer_size,
rgbtype, &status);

TACC TEXAS

Two-Phase Access

* ROMIO implements two-phase collective I/O
— Data is read by clients in contiguous pieces (phase 1)
— Data is redistributed to the correct client (phase 2)

* ROMIO applies two-phase when collective
accesses overlap between processes

» More efficent I/O access than data sieving alone

=)

TACC TEXAS

34

Two-Phase Performance
Often a big win:

O Contig.

Hrie views

Ocon. 170
100
o =
T T T T T
HP Exemplar P Intel Paragon NEC SX4 sel

TACC TEXAS

Hints
« Controlling PVFS

— striping_factor - size of “strips” on 1/O servers
— striping_unit - number of I/O servers to stripe across
— start_iodevice - which 1/O server to start with

» Controlling aggregation
— cb_config_list - list of aggregators
— cb_nodes - number of aggregators (upper bound)
* Tuning ROMIO optimizations
— romio_cb_read, romio_cb_write - aggregation on/off
— romio_ds_read, romio_ds_write - data sieving on/off

TACC TEXAS

35

The Proof is in the Performance

 Final performance is almost 3 times VFS
access!

* Hints allowed us to turn off two-phase, modify
striping of data

O VFS

| Contig. MPI-IO
O File View

O Collective

[Tuned Collective

TACGGC TEXAS T

AT AUSTIN

Summary: Why Use MPI-10?
» Better concurrent access model than POSIX one
— Explicit list of processes accessing concurrently
— More lax (but still very usable) consistency model
» More descriptive power in interface

— Derived datatypes for concise, noncontiguous file and
/or memory regions

— Collective I/O functions

Optimizations built into MPI-IO implementation
— Noncontiguous access

— Collective I/0O (aggregation)

» Performance portability

TACC TEXAS

AT AUSTIN

36

