
1

Introduction to
Parallel Computing

Jay Boisseau
Texas Advanced Computing Center

July 14, 2008

Intro to Parallel Computing

(Pre-)TACC History

•  Center for High Performance Computing (CHPC) created by UT
 System in 1986

•  Massive downscaling, moved into UT Austin IT Department in
 early 90’s

•  Joined National Partnership for Advanced Computational
 Infrastructure led by San Diego Supercomputer Center (SDSC)
 in 1997

•  Became TACC: new mission, vision, goals, and strategy in 2001
–  External reviews emphasized importance of HPC
–  VPR Office assumed ownership, set goal of world class

2

Intro to Parallel Computing

TACC’s Growth and Leadership in
Supercomputing

•  TACC has 7 years of success leading to Ranger:
–  First terascale cluster in the NSF program (2003)
–  Joined NSF TeraGrid (2004)
–  Deployed (current) Lonestar (2006)
–  Growing R&D activities in HPC, Vis, and Grid Computing

•  TACC now has the expertise, experience, passion,
and partners to support world-class science

Intro to Parallel Computing

Ranger: What is it?

•  Ranger is most powerful HPC
 system for open science

•  Results from over 2 ½ years
 of initial planning and
 deployment efforts

•  Funded by the National
 Science Foundation as part
 of a program to offer very
 high-end HPC for open
 science

•  Oh yeah, it’s a Texas-sized
 supercomputer

3

Intro to Parallel Computing

Ranger: The Big Numbers
•  $59M Awarded by NSF in September 2006

•  579Teraflops (1/2 petaflop) peak performance
–  1.7 petabytes disk
–  123 terabytes memory

•  500 million processor hours per year
–  200,000+ years of computational work over lifetime.

Intro to Parallel Computing
6

What Is Parallel Computing?

•  Parallel computing: use of multiple processors or
computers working together on a common task.
–  Each processor works on its section of the problem
–  Processors can exchange information

Grid of Problem to be solved

CPU #1 works on this area
of the problem

CPU #3 works on this area
of the problem

 CPU #4 works on this area
of the problem

 CPU #2 works on this area
of the problem

y

x

exchange

exchange

exchange exchange exchange

4

Intro to Parallel Computing
7

Why Do Parallel Computing?

•  To compute beyond the limits of single CPU systems
–  achieve more performance
–  utilize more memory

•  Parallel computing allows one to:
–  solve problems that can’t be solved in a reasonable time with

a single processor
–  solve problems that don’t fit on a single processor system (or

a single server)

•  So we can …
–  solve larger problems
–  solve problems faster
–  solve more problems/cases

Intro to Parallel Computing
8

Limits of Parallel Computing

•  Theoretical Upper Limits
–  Amdahl’s Law

•  Practical Limits
–  load balancing
–  non-computational sections

•  Other Considerations
–  time to develop/rewrite code
–  time to debug & optimize code

5

Intro to Parallel Computing
9

Theoretical Upper Limits to Performance

•  All parallel programs contain:
–  parallel sections (we hope!)
–  serial sections (unfortunately)

•  Serial sections limit the parallel effectiveness
•  Amdahl’s Law states this formally

Intro to Parallel Computing
10

•  Amdahl’s Law places a strict limit on the speedup that
can be realized by using multiple processors.
–  Effect of multiple processors on run time

–  Effect of multiple processors on speed up

–  Where
•  fs = serial fraction of code
•  fp = parallel fraction of code
•  N = number of processors

S
=

1

f
s
 +
 f
p
 /
N

Amdahl’s Law

6

Intro to Parallel Computing
11

•  Speed up formula:

–  Where
•  fs = serial fraction of code
•  fp = parallel fraction of code
•  N = number of processors

–  Case:
•  fs = 0, fp = 1, then S = N
•  N goes to infinity: S = 1/fs, so if 10% of the code is sequential,

you will never speed up by more than 10, no matter the number
of processors.

Limit Cases of Amdahl’s Law

S
 =

1

f
s
 +
 f
p
 /
 N

Intro to Parallel Computing
12

It takes only a small fraction of serial content in a code to
 degrade the parallel performance.

0

50

100

150

200

250

0
 50
 100
 150
 200
 250

Number of processors

fp = 1.000

fp = 0.999

fp = 0.990

fp = 0.900

Illustration of Amdahl's Law

S

7

Intro to Parallel Computing
13

Amdahl’s Law provides a theoretical upper limit on parallel
speedup assuming that there are no costs for
 communications. In reality, communications will result in a
 further degradation of performance.

0

10

20

30

40

50

60

70

80

0
 50
 100
 150
 200
 250

Number of processors

Amdahl's Law

Reality

fp = 0.99

Practical Limits: Amdahl’s Law vs. Reality

S

Intro to Parallel Computing
14

Practical Limits: Amdahl’s Law vs. Reality

•  In reality, the situation is even worse than
predicted by Amdahl’s Law due to:
–  Load balancing (waiting)
–  Scheduling (shared processors or memory)
–  Communications
–  I/O

8

Intro to Parallel Computing
15

Other Considerations

•  Writing effective parallel codes is difficult!
–  Load balance is important
–  Communication can limit parallel efficiency
–  Serial time can dominate

•  Is it worth your time to parallelize your code?
–  Do the CPU, or time-to-solution, requirements

justify parallelization?
–  Does the problem size need to be larger than you

can currently run?
–  Will the code be used more than once?

Intro to Parallel Computing
16

Types of Parallel Computers

•  Until recently, Flynn's taxonomy was
commonly used to classify parallel computers
into one of four basic types:
–  Single instruction, single data (SISD): single scalar

processor
–  Single instruction, multiple data (SIMD): “array

processors,” Connection Machine, MasPar
–  Multiple instruction, single data (MISD): various

special purpose machines
–  Multiple instruction, multiple data (MIMD): Nearly

all parallel machines these days

9

Intro to Parallel Computing
17

Types of Parallel Computers

•  However, since the MIMD model “won,” a
much more useful way to classify modern
parallel computers is by their memory model
–  shared memory
–  distributed memory

Intro to Parallel Computing
18

B U S

Shared and Distributed Memory

Shared memory: single address
space. All processors have access
to a pool of shared memory.
(examples: SGI Altix, IBM Power5 node)

Methods of memory access :
 - Bus
 - Crossbar

Distributed memory: each processor
has its own local memory. Must do
message passing to exchange data
between processors.
(examples: Clusters)

Methods of memory access :
 - various topological interconnects

Network

P

M

P P P P P

M M M M M

Memory

P P P P P P

Bus

10

Intro to Parallel Computing
19

Reasons for Each System

•  SMPs: easy to build, easy to program, good price-
performance for small numbers of processors;
predictable performance due to UMA

•  cc-NUMAs (Distributed Shared memory machines) :
enables larger number of processors and shared
memory address space than SMPs while still being easy
to program, but harder and more expensive to build

•  Distributed memory MPPs and clusters: easy to build
and to scale to large numbers of processors, but hard to
program and to achieve good performance

•  Multi-tiered/hybrid/CLUMPS: combines best (worst?)
of all worlds… but maximum scalability!

Intro to Parallel Computing
20

Programming Parallel Computers

•  Programming single-processor systems is
(relatively) easy due to:
–  single thread of execution
–  single address space

•  Programming shared memory systems can
benefit from the single address space

•  Programming distributed memory systems is
the most difficult due to multiple address
spaces and need to access remote data

11

Intro to Parallel Computing
21

 Programming Parallel Computers

•  Both parallel systems (shared memory and
distributed memory) offer ability to perform
independent operations on different data
(MIMD) and implement task parallelism

•  Both can be programmed in a data parallel,
SIMD fashion

Intro to Parallel Computing
22

Types of Parallelism: Two Extremes

•  Data parallelism
–  Each processor performs the same task on

different data
•  Task parallelism

–  Each processor performs a different task

•  Most applications fall somewhere on the
continuum between these two extremes

12

Intro to Parallel Computing
23

Data Parallel Programming Example

•  One code will run on 2 CPUs
•  Program has array of data to be operated on by 2 CPUs so

array is split into two parts.

program:
…
if CPU=a then
 low_limit=1
 upper_limit=50
elseif CPU=b then
 low_limit=51
 upper_limit=100
end if
do I = low_limit,
 upper_limit
 work on A(I)
end do
...
end program

CPU A CPU B

program:
…
low_limit=1
upper_limit=50
do I= low_limit,
 upper_limit
 work on A(I)
end do
…
end program

program:
…
low_limit=51
upper_limit=100
do I= low_limit,
 upper_limit
 work on A(I)
end do
…
end program

Intro to Parallel Computing
24

Task Parallel Programming Example

•  One code will run on 2 CPUs
•  Program has 2 tasks (a and b) to be done by 2 CPUs

program.f:
…
initialize
...
if CPU=a then
 do task a
elseif CPU=b then
 do task b
end if
….
end program

CPU A CPU B

program.f:
…
initialize
…
do task a
…
end program

program.f:
…
initialize
…
do task b
…
end program

13

Intro to Parallel Computing
25

Single Program, Multiple Data (SPMD)

•  SPMD: dominant programming model for shared and
distributed memory machines.
–  One source code is written
–  Code can have conditional execution based on which

processor is executing the copy
–  All copies of code are started simultaneously and

communicate and sync with each other periodically

•  MPMD: more general, and possible in hardware, but
no HPC system/programming software generally
enables it

Intro to Parallel Computing
26

SPMD Programming Model

Processor 0 Processor 1 Processor 2 Processor 3

source.c

source.c source.c source.c source.c

14

Intro to Parallel Computing
27

Shared Memory vs. Distributed Memory

•  Tools can be developed to make any system
appear to look like a different kind of system
–  distributed memory systems can be programmed

as if they have shared memory, and vice versa
–  such tools do not produce the most efficient code,

but might enable portability

•  However, the most natural way to program
any machine is to use tools & languages that
express the algorithm explicitly for the
architecture.

Intro to Parallel Computing
28

Shared Memory Programming: OpenMP

•  Shared memory systems (SMPs, cc-NUMAs)
have a single address space:
–  applications can be developed in which loop

iterations (with no dependencies) are executed by
different processors

–  shared memory codes are mostly data parallel,
‘SIMD’ kinds of codes

–  OpenMP is the new standard for shared memory
programming (compiler directives)

–  Vendors offer native compiler directives

15

Intro to Parallel Computing
29

Accessing Shared Variables

•  If multiple processors want to write to a
shared variable at the same time, there could
be conflicts :
–  Process 1 and 2
–  read X
–  compute X+1
–  write X

•  Programmer, language, and/or architecture
must provide ways of resolving conflicts

Shared variable X
 in memory

X+1 in
 proc1

X+1 in
 proc2

Intro to Parallel Computing
30

OpenMP Example #1: Parallel Loop

!$OMP PARALLEL DO
 do i=1,128

 b(i) = a(i) + c(i)

 end do
!$OMP END PARALLEL DO

•  The first directive specifies that the loop immediately following
should be executed in parallel. The second directive specifies
the end of the parallel section (optional).

•  For codes that spend the majority of their time executing the
content of simple loops, the PARALLEL DO directive can result
in significant parallel performance.

16

Intro to Parallel Computing
31

OpenMP Example #2: Private Variables

!$OMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(I,TEMP)
do I=1,N
 TEMP = A(I)/B(I)
 C(I) = TEMP + SQRT(TEMP)
end do
!$OMP END PARALLEL DO

•  In this loop, each processor needs its own private copy of the
variable TEMP. If TEMP were shared, the result would be
unpredictable since multiple processors would be writing to the
same memory location.

Intro to Parallel Computing
32

Distributed Memory Programming: MPI

•  Distributed memory systems have separate
address spaces for each processor
–  Local memory accessed faster than remote

memory
–  Data must be manually decomposed
–  MPI is the standard for distributed memory

programming (library of subprogram calls)
–  Older message passing libraries include PVM and

P4; all vendors have native libraries such as
SHMEM (T3E) and LAPI (IBM)

17

Intro to Parallel Computing
33

Data Decomposition
•  For distributed memory systems, the ‘whole’ grid or

sum of particles is decomposed to the individual
nodes
–  Each node works on its section of the problem
–  Nodes can exchange information

Grid of Problem to be solved

Node #1 works on this area
of the problem

Node #3 works on this area
of the problem

 Node #4 works on this area
of the problem

 Node #2 works on this area
of the problem

y

x

exchange

exchange

exchange exchange

Intro to Parallel Computing
34

Typical Data Decomposition

•  Example: integrate 2-D propagation problem:
Starting partial
differential equation:

Finite Difference
Approximation:

PE #0 PE #1 PE #2

PE #4 PE #5 PE #6

PE #3

PE #7

y

x

18

Intro to Parallel Computing
35

MPI Example #1

•  Every MPI program needs these:

#include <mpi.h> /* the mpi include file */
int main(int argc, char *argv[])
{
 /* Initialize MPI */
 ierr=MPI_Init(&argc, &argv);
/* How many total PEs are there */
 ierr=MPI_Comm_size(MPI_COMM_WORLD, &nPEs);
/* What node am I (what is my rank? */
 ierr=MPI_Comm_rank(MPI_COMM_WORLD, &iam);
 ...
 ierr=MPI_Finalize();
}

Intro to Parallel Computing
36

MPI Example #2
 #include
#include "mpi.h”

int main(int argc, char *argv[])
int argc;
char *argv[];
{

 int myid, numprocs;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 /* print out my rank and this run's PE size*/
 printf("Hello from %d\n",myid," of ",numprocs);
 MPI_Finalize();

}

19

Intro to Parallel Computing
37

MPI: Sends and Receives

•  Real MPI programs must send and receive data
between the processors (communication)

•  The most basic calls in MPI (besides the initialization,
rank/size, and finalization calls) are:
–  MPI_Send
–  MPI_Recv

•  These calls are blocking: the source processor
issuing the send/receive cannot move to the next
statement until the target processor issues the
matching receive/send.

Intro to Parallel Computing
38

Message Passing Communication

•  Processes in message passing program
communicate by passing messages

•  Basic message passing primitives
•  Send (parameters list)
•  Receive (parameter list)
•  Parameters depend on the library used

A B

20

Intro to Parallel Computing
39

MPI Example #3: Send/Receive
#include "mpi.h"
/**
This is a simple send/receive program in MPI
**/
int main(argc,argv)
int argc;
char *argv[];
{
 int myid, numprocs, tag,source,destination,count,buffer ;
 MPI_Status status;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 tag=1234;
 source=0;
 destination=1;
 count=1;
 if(myid == source){
 buffer=5678;
 MPI_Send(&buffer,count,MPI_INT,destination,tag,MPI_COMM_WORLD);
 printf("processor %d sent %d\n",myid,buffer);
 }
 if(myid == destination){
 MPI_Recv(&buffer,count,MPI_INT,source,tag,MPI_COMM_WORLD,&status);
 printf("processor %d got %d\n",myid,buffer);
 }
 MPI_Finalize();
}

Intro to Parallel Computing
40

Programming Multi-tiered Systems

•  Systems with multiple shared memory nodes
are becoming common for reasons of
economics and engineering.

•  Memory is shared at the node level,
distributed above that:
–  Applications can be written using OpenMP + MPI
–  Developing apps with only MPI usually possible

