
1

Introduction to Programming with
OpenMP

Jay Boisseau (Lars Koesterke)
July 15, 2008

2

Overview
•  Parallel processing

–  Review: distributed vs. shared memory platforms
–  Motivations for parallelization

•  What is OpenMP?
•  How does OpenMP work?

–  Architecture
–  Fork-join model of parallelism
–  Communication

•  OpenMP constructs
–  Directives
–  Runtime Library API
–  Environment variables

•  What’s new? OpenMP 2.0/2.5

2

3

Distributed Memory Platforms

Local Memory

Interconnect

Processors

Clusters are Distributed Memory platforms.
Each processor/node has its own memory. Use MPI across these systems.

…

…

…

4

Shared Memory Platforms

Shared
 Memory
Banks

Memory
 Interface

Processors

The Lonestar/Ranger nodes are shared-memory platforms.
Each processor has equal access to a common pool of shared memory.
Lonestar and Ranger have 4 and 16 cores per node, respectively.

…

…

3

5

A single-processor, large-memory job will crowd out smaller jobs.
 Example:
On a 16 processor system, the following memory map indicates 10
 CPUs are idle!

Run large-memory jobs on multiple CPUs to maximize CPU usage
 and reduce everyone’s turnaround time.
Fair Share of Memory Total Size of Memory/#CPUs_you_use

•  Shorten Execution Wall-Clock Time.
•  Access Larger Share of Memory, with minimal impact
 on other users.

 32 GB main memory

1 CPU 3 CPUs 2 CPUs
16 GB 12 GB 4 GB

6

What is OpenMP?

•  De facto open standard for Scientific Parallel Programming
on Symmetric MultiProcessor (SMP) Systems.

•  Implemented by:
–  Compiler Directives
–  Runtime Library (an API, Application Program Interface)
–  Environment Variables

•  http://www.openmp.org/ has tutorials and description.

•  Runs on many different SMP platforms.

•  Standard specifies Fortran and C/C++ Directives & API.
Not all vendors have developed C/C++ OpenMP yet.

•  Allows both fine-grained (e.g. loop-level) and coarse-grained
parallelization.

4

7

Advantages/Disadvantages of OpenMP

•  Pros
–  Shared Memory Parallelism is easier to learn.
–  Parallelization can be incremental
–  Coarse-grained or fine-grained parallelism
–  Widely available, portable

•  Cons
–  Scalability limited by memory architecture
–  Available on SMP systems only

8

OpenMP Architecture

Application User

runtime library

threads in operating system

Compiler directives Environment variables

5

9

OpenMP fork-join parallelism

•  Parallel Regions are basic “blocks” within code.
•  A master thread is instantiated at run-time & persists

throughout execution.
•  Master thread assembles team of threads at parallel

regions.

master thread

parallel region parallel region parallel region

10

How do threads communicate?

•  Every thread has access to “global” memory (shared).
Each thread has access to a stack memory (private).

•  Use shared memory to communicate between threads.
•  Simultaneous updates to shared memory can create a

race condition. Results change with different thread
scheduling.

•  Use mutual exclusion to avoid data sharing --- but don’t
use too many because this will serialize performance.

6

11

OpenMP constructs
OpenMP language

extensions

parallel control
structures

data
environment synchronization

•  governs flow of
control in the
program

parallel directive

•  specifies
variables as
shared or private

shared and
private
clauses

•  coordinates thread
execution

critical and
atomic directives
barrier directive

work sharing

•  distributes work
among threads

do/parallel do
and
section directives

runtime
functions, env.

variables

• Runtime environment

omp_set_num_threads()
omp_get_thread_num()
OMP_NUM_THREADS
OMP_SCHEDULE

12

OpenMP Directives

OpenMP directives are comments in source code that specify parallelism
 for shared-memory (SMP) machines.

FORTRAN : directives begin with the !OMP, COMP or *$OMP sentinel.
 F90 : !$OMP free-format
C/C++ : directives begin with the # pragma omp sentinel.

Parallel regions are marked by enclosing parallel directives
Work-sharing loops are marked by parallel DO/FOR

 Fortran C/C++

!$OMP parallel # pragma omp
 parallel
 ... {...}
!$OMP end parallel
!$OMP parallel do # pragma omp parallel for
 DO ... for(…){...}
!$OMP end parallel do

7

13

OpenMP clauses

•  Clauses control the behavior of an OpenMP
directive
1.  Data scoping (Private, Shared, Default)
2.  Schedule (Guided, Static, Dynamic, etc.)
3.  Initialization (e.g. COPYIN, FIRSTPRIVATE)
4.  Whether to parallelize a region or not (if-clause)
5.  Number of threads used (NUM_THREADS)

14

Parallel Region/Worksharing

•  Use OpenMP directives to specify Parallel Region and Work-Sharing
 constructs.

Parallel

End Parallel

Code block Each Thread Executes
DO Work-Sharing
SECTIONS Work Sharing
SINGLE One Thread
CRITICAL One Thread at a time

Parallel DO/for
Parallel SECTIONS

Stand-alone
Parallel Constructs

8

15

Code Execution: What happens during OpenMP?

•  Execution begins with a single “Master Thread”.
•  A team of threads is created at each parallel region.

 Number of threads equals OMP_NUM_THREADS.
 Thread executions are distributed among available processors.

•  Execution is continued after parallel region by the Master Thread.

time
Serial

4 CPU

Parallelexecution

Master Thread Multi-Threaded

Serial

6 CPU

Parallel Serial

16

More about OpenMP parallel regions…

There are two OpenMP “modes”
•  In static mode

–  Programmer makes use of a fixed number of threads
•  In dynamic mode:

–  the number of threads can change under user control from one
parallel region to another (use function
OMP_set_num_threads)

–  specified by setting an environment variable
setenv OMP_DYNAMIC true

Note: the user can only define the maximum number of threads,
compiler can use a smaller number

9

17

1 !$OMP PARALLEL
2 code block
3 call work(…)
4   !$OMP END PARALLEL

Line 1 Team of threads formed at parallel region.
Lines 2-3 Each thread executes code block and subroutine calls.

 No branching (in or out) in a parallel region.
Line 4 All threads synchronize at end of parallel region

 (implied barrier).

18

1 !$OMP PARALLEL DO
2 do i=1,N
3 a(i) = b(i) + c(i) !not much work
4 enddo
5 !$OMP END PARALLEL DO

Line 1 Team of threads formed (parallel region).
Line 2-4 Loop iterations are split among threads.
Line 5 (Optional) end of parallel loop (implied barrier at enddo).

•  Each loop iteration must be independent of other iterations.

10

19

Example from Champion (IBM system)

20

OpenMP (parallel constructs)
•  Replicated : Work blocks are executed by all threads.
•  Work Sharing : Work is divided among threads.

PARALLEL
 {code}
END PARALLEL

PARALLEL DO
 do I = 1,N*4
 {code}
 end do
END PARALLEL DO

PARALLEL
 {code1}
DO
 do I = 1,N*4
 {code2}
 end do
 {code3}
END PARALLEL

code  code  code  code  I=N+1,2N 
 code 

I=2N+1,3N 
  code 

I=3N+1,4N 
  code 

I=1,N 
 code 

code1  code1  code1 code1 

I=N+1,2N 
 code2 

I=2N+1,3N 
  code2 

I=3N+1,4N 
  code2 

I=1,N 
 code2 

code3  code3  code3 code3 

Replicated  Work Sharing  Combined 

11

21

The !$OMP PARALLEL directive declares an entire region as
parallel.
Merging work-sharing constructs into a single parallel region
eliminates the overhead of separate team formations.

!$OMP PARALLEL
 !$OMP DO
 do i=1,n

 a(i)=b(i)+c(i)
 enddo
 !$OMP END DO
 !$OMP DO
 do i=1,m

 x(i)=y(i)+z(i)
 enddo
 !$OMP END DO
!$OMP END PARALLEL

!$OMP PARALLEL DO
 do i=1,n
 a(i)=b(i)+c(i)
 enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL DO
 do i=1,m
 x(i)=y(i)+z(i)
 enddo
!$OMP END PARALLEL DO

22

Parallel Work

If work is completely
parallel, scaling is linear.

Speedup =
cpu-time(1) / cpu-time(N)

12

23

Work-Sharing

Actual
Ideal

Scheduling, memory
contention and overhead
can impact speedup.

24

13

25

Comparison of scheduling options

name type chunk chunk size number
of
chunks

static or
dynamic

compute
overhead

simple
static

simple no N/P P static lowest

interleaved simple yes C N/C static low

simple
dynamic

dynamic optional C N/C dynamic medium

guided guided optional decreasing
from N/P

fewer
than N/
C

dynamic high

runtime runtime no varies varies varies varies

26

thread0: do i=1,16
 A(i)=B(i)+C(i)
 enddo
 do i=65,80
 A(i)=B(i)+C(i)
 enddo

thread1: do i=17,32
 A(i)=B(i)+C(i)
 enddo
 do i = 81,96
 A(i)=B(i)+C(i)
 enddo

thread2: do i=33,48
 A(i)=B(i)+C(i)
 enddo
 do i = 97,112
 A(i)=B(i)+C(i)
 enddo

thread3: do i=49,64
 A(i)=B(i)+C(i)
 enddo
 do i = 113,128
 A(i)=B(i)+C(i)
 enddo

!$OMP parallel do schedule(static,16)
 do i=1,128 !OMP_NUM_THREADS=4
 A(i)=B(i)+C(i)
 enddo

14

27

Comparison of scheduling options

potential for better load balancing, especially if chunk is low

higher compute overhead
synchronization cost associated per chunk of work

low compute overhead
no synchronization overhead per chunk
takes better advantage of data locality

cannot compensate for load imbalance

Dynamic
Pros:

Cons:

STATIC

Static
Pros:

Cons:

28

Comparison of scheduling options
•  When shared array data is reused multiple times, prefer

static scheduling to dynamic
•  Every invocation of the scaling would divide the iterations

among CPUs the same way for static but not so for
dynamic scheduling

!$OMP parallel private (i,j,iter)
do iter=1,niter

...
!$OMP do

do j=1,n
 do i=1,n
 A(i,j)=A(i,j)*scale
 end do
end do
...

end do
!$OMP end parallel

15

29

OpenMP data environment
•  Data scoping clauses control the sharing behavior of

variables within a parallel construct.
•  These include shared, private, firstprivate,

lastprivate, reduction clauses
Default variable scope:
1.  Variables are shared by default.
2.  Global variables are shared by default.
3.  Automatic variables within subroutines called from

within a parallel region are private (reside on a stack
private to each thread), unless scoped otherwise.

4.  Default scoping rule can be changed with default
clause.

30

SHARED - Variable is shared (seen) by all processors.
PRIVATE - Each thread has a private instance (copy) of the
 variable.

Defaults: All DO LOOP indices are private, all other variables are
 shared.

!$OMP PARALLEL DO
 do i=1,N
 A(i) = B(i) + C(i)
 enddo
!$OMP END PARALLEL DO

All threads have access to the same storage areas for A, B, C, and
 N, but each loop has its own private copy of the loop index, i.

SHARED(A,B,C,N) PRIVATE(i)

16

31

In the following loop, each thread needs its own PRIVATE copy of
 TEMP. If TEMP were shared, the result would be unpredictable
 since each processor would be writing and reading to/from the
 same memory location.

!$OMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(temp,i)
 do i=1,N
 temp = A(i)/B(i)
 C(i) = temp + cos(temp)
 enddo
!$OMP END PARALLEL DO

A “lastprivate(temp)” clause will copy the last loop(stack) value of temp to
 the (global) temp storage when the parallel DO is complete.
A “firstprivate(temp)” would copy the global temp value to each stack’s temp.

32

Default variable scoping in Fortran

Program Main

Integer, Parameter :: nmax=100
Integer :: n, j
Real*8 :: x(n,n)

Common /vars/ y(nmax)
...
n=nmax; y=0.0
!$OMP Parallel do
 do j=1,n

 call Adder(x,n,j)
 end do
...
End Program Main

Subroutine Adder(a,m,col)

Common /vars/ y(nmax)
SAVE array_sum
Integer :: i, m

Real*8 :: a(m,m)

do i=1,m
 y(col)=y(col)+a(i,col)
end do
array_sum=array_sum+y(col)

End Subroutine Adder

17

33

Default data scoping in Fortran (cont.)
Variable Scope Is use safe? Reason for scope

n shared yes declared outside parallel
construct

j private yes parallel loop index variable

x shared yes declared outside parallel
construct

y shared yes common block

i private yes parallel loop index variable

m shared yes actual variable n is shared

a shared yes actual variable x is shared

col private yes actual variable j is private

array_sum shared no declared with SAVE
attribute

34

An operation that “combines” multiple elements to form a single result, such as a
 summation, is called a reduction operation. A variable that accumulates the
 result is called a reduction variable. In parallel loops reduction operators and
 variables must be declared.

 real*8 asum, aprod
 ...
!$OMP PARALLEL DO REDUCTION(+:asum) REDUCTION(*:aprod)
 do i=1,N
 asum = asum + a(i)
 aprod = aprod * a(i)
 enddo
!$OMP END PARALLEL DO
 print*, asum, aprod

Each thread has a private ASUM and APROD, initialized to the operator’s
 identity, 0 & 1, respectively. After the loop execution, the master thread collects
 the private values of each thread and finishes the (global) reduction.

18

35

When a work-sharing region is
exited, a barrier is implied - all
threads must reach the barrier
before any can proceed. By
using the NOWAIT clause at the
end of each loop inside the
parallel region, an unnecessary
synchronization of threads can
be avoided.

!$OMP PARALLEL
!$OMP DO
 do i=1,n
 work(i)
 enddo
!$OMP END DO NOWAIT
!$OMP DO schedule(dynamic,M)
 do i=1,m
 x(i)=y(i)+z(i)
 enddo
!$OMP END
!$OMP END PARALLEL

36

When each thread must execute a section of code serially (only one thread
at a time can execute it) the region must be marked with CRITICAL / END
CRITICAL directives.

Use the “!$OMP ATOMIC” directive if executing only one operation.

!$OMP PARALLEL SHARED(sum,X,Y)
 ...
!$OMP CRITICAL
 call update(x)
 call update(y)
 sum=sum+1
!$OMP END CRITICAL
...
!$OMP END PARALLEL

!$OMP PARALLEL SHARED(X,Y)
 ...
!$OMP ATOMIC
 sum=sum+1
...
!$OMP END PARALLEL

19

37

When each thread must execute a section of code serially (only
one thread at a time can execute it), locks provide a more flexible
way of ensuring serial access than CRITICAL and ATOMIC
directives

call OMP_INIT_LOCK(maxlock)
!$OMP PARALLEL SHARED(X,Y)
...
call OMP_set_lock(maxlock)
call update(x)
call OMP_unset_lock(maxlock)
...
!$OMP END PARALLEL
call OMP_DESTROY_LOCK(maxlock)

38

Overhead associated with mutual exclusion

Open MP exclusion routine/directive cycles

OMP_SET_LOCK/OMP_UNSET_LOCK 330
OMP_ATOMIC 480
OMP_CRITICAL 510

All measurements were made in dedicated mode

20

39

Runtime Library API Functions

omp_get_num_threads() Number of Threads in
team,N.

omp_get_thread_num() Thread ID.
{0 -> N-1}

omp_get_num_procs() Number of machine CPUs.

omp_in_parallel() True if in parallel region &
multiple thread executing

omp_set_num_threads(#) Changes Number of
Threads for parallel region.

40

API Dynamic Scheduling

omp_get_dynamic() True if dynamic threading is on.

omp_set_dynamic() Set state of dynamic threading
(true/false)

OMP_NUM_THREADS Set to No. of Threads
OMP_DYNAMIC TRUE/FALSE for enable/disable

dynamic threading

21

41

What’s new? -- OpenMP 2.0/2.5

•  Wallclock timers
•  Workshare directive (Fortran)
•  Reduction on array variables
•  NUM_THREAD clause

42

OpenMP Wallclock Timers

 Real*8 :: omp_get_wtime, omp_get_wtick() (Fortran)
 double omp_get_wtime(), omp_get_wtick(); (C)

 double t0, t1, dt, res;
 ...
 t0=omp_get_wtime();
 <work>
 t1=omp_get_wtime();
 dt=t1-t0; res=1.0/omp_get_wtick()
 printf(“Elapsed time = %lf\n”,dt);
 printf(“clock resolution = %lf\n”,res);

22

43

Workshare directive
•  WORKSHARE directive enables parallelization of Fortran 90 array

expressions and FORALL constructs

 Integer, Parameter :: N=1000
 Real*8 :: A(N,N), B(N,N), C(N,N)
 !$OMP WORKSHARE

 A=B+C
 !$OMP End WORKSHARE

•  Enclosed code is separated into units of work
•  All threads in a team share the work
•  Each work unit is executed only once
•  A work unit may be assigned to any thread

44

Reduction on array variables
•  Array variables may now appear in the REDUCTION

clause
 Real*8 :: A(N), B(M,N)
 Integer :: i, j
 …
 !$OMP Parallel Do Reduction(+:A)

 do i=1,n
 do j=1,m
 A(i)=A(i)+B(j,i)
 end do
 end do
 !$OMP End Parallel Do

•  Exceptions are assumed size and deferred shape arrays
•  Variable must be shared in the enclosing context

23

45

NUM_THREADS clause
•  Use the NUM_THREADS clause to specify the number of threads to

execute a parallel region
 Usage:

 !$OMP PARALLEL NUM_THREADS(scalar integer expression)
 <code block>
 !$OMP End PARALLEL

 where scalar integer expression must evaluate to a positive
integer

•  NUM_THREADS supersedes the number of threads specified by the
OMP_NUM_THREADS environment variable or that set by the
OMP_SET_NUM_THREADS function

46

References

•  http://www.openmp.org/

•  Parallel Programming in OpenMP, by Chandra,Dagum,
Kohr, Maydan, McDonald, Menon

•  Using OpenMP, by Chapman, Jost, Van der Pas
(OpenMP2.5)

•  http://webct.ncsa.uiuc.edu:8900/public/OPENMP/

