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Outline 
Two talks in one: 

•  EM64T/Opteron compiler optimizations 
1.  Using Parallel Libraries 
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Compilers and Optimization 

•  “The compiler now does a very good job of 
optimizing code so you don’t have to.” 

•  But, program developers should ensure that 
their codes are adaptable to hardware 
evolution and are scalable. 

Optimization Level: –On 

•  -O0 no optimization: Fast compilation, disables 
optimization 

•  -O1 optimization for speed, keeps code size 
small 

•  -O2 low to moderate optimization: partial 
debugging support, disables inlining  

•  -O3 aggressive optimization: compile time/
space intensive and/or marginal effectiveness; 
may change code semantics and results 
(sometimes even breaks codes!) 
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Divide performance* comparison 

Compiler option #cycles/iteration 

None 30.0 

-O2 15.7 

-O3 -qhot 12.7 

* on Champion 

Optimization Levels 
•  Operations performed at moderate optimization 

levels 
–  instruction rescheduling 
–  copy propagation 
–  software pipelining 
–  common subexpression elimination 
–  prefetching, loop transformations 

•  Operations performed at aggressive 
optimization levels 
–  enables –O3 
–  more aggressive prefetching, loop transformations 
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What are all these Optimizations? 
•  Common Subexpression elimination 

–  X= (a+b)- (a+b)/4   
–  Why do (a+b) twice? Save in a temp register 

•  Copy Propagation 
–  y=x 
–  z=y+3 
–  Is optimized to:  
–  z=x+3  
–  This saves registers, space 
–  Required cleanup after other opimizations  

What are all these Optimizations? 
•  Software Pipelining 

–  If you had 
for i = 1 to bignumber  


A(i)  //Some statement using A(i)

B(I)  

C(i)


end


•  Also an example of “loop unrolling” 


–  Rewrite as:  
for i = 1 to (bignumber 

- 2) step 3  

A(i)  

A(i+1)  

A(i+2)  


B(i) 

B(i+1)  

B(i+2)

C(i)  

C(i+1)  

C(i+2)


end
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Intel Compiler Options I 
Processor-specific optimization options: 
  -xT          generates specialized code for EM64T, includes SSE4 

Other optimization options: 
  -mp  maintain floating point precision (disables some optimizations) 
  -mp1  improve floating-point precision (speed impact is less than -mp). 
  -ip      enable single-file interprocedural (IP) optimizations          

 (within files). Line numbers produced for debugging 
  -ipo     enable multi-file IP optimizations (between files) 

   

Intel Compiler Options II 
Other options: 
-g             debugging information, generates symbol table 
-strict_ansi  strict ANSI compliance 
-C         enable extensive runtime error checking (-CA, -CB, -CS, - 

 CU, -CV) 
-convert <kwd>   specify file format 

   keyword:  big_endian, cray, ibm, little_endian, native, vaxd,  
-openmp  enable the parallelizer to generate multi-threaded code   

 based on the OpenMP directives. 
-static   create a static executable for serial applications.  MPI   

 applications compiled on Lonestar cannot be built statically. 
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Intel Compiler - Best Practice 
•  Normal compiling 

 ifort –O3 –xT test.c 
•  Try compiling at -O3 -xT.  
•  If code breaks or gives wrong answers with -O3 xT, 

first try –mp (maintain precision). 
•  O2 is default opt, compile with –O0 if this breaks 

(very rare) 
•  -xT can include optimizations and may break some 

codes 
•  Don’t include debug options for a production compile!  

  ifort –O2  –g  –CB  test.c 

Optimizations for Ranger AMD Opteron 
System 

•  Ranger supports many compiler flavors and 
similar installed libraries as other production 
systems at TACC 
–  We understand that some applications can be 

faster when compiled with different compilers on 
different architectures 

–  Alternate compilers allows for more freedom for 
specialty additions not supported by other venders 
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Compiling on Ranger 

•  Intel: icc/ifort -o flamec.exe -O3 -xW prog.c/
cc/f90  

•  PGI: pgcc/pgcpp/pgf95 -o flamef.exe -fast -tp 
barcelona-64 prog.c/cc/f90gnu 

•  GCC: gcc -o flamef.exe -mtune=barcelona -
march=barcelona prog.c 

•  Sun: sun_cc/sun_CC/sunf90 -o flamef.exe -
xarch=sse2 prog.c/cc/f90 

PGI Compilers 

•  -03  
–  performs some compile time and memory intensive optimizations in addition 

to those executed with -O2, but may not improve performance for all 
programs.- 

•  Mipa=fast  
–  Interprocedural optimizations There is a loader problem with this option. 

•  -tp barcelona-64 
–  includes specialized code for the barcelona chip. 

•  -fast  
–  -O2 -Munroll=c:1 -Mnoframe -Mlre -Mautoinline -Mvect=sse -Mscalarsse -

Mcache_align -Mflushz  
•  -mp  

–  enable the parallelizer to generate multi-threaded code based on the 
OpenMP directives 

•  ‑Minfo=mp,ipa  
–  Information about OpenMP, interprocedural optimization‑helplists options 
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Tuning Parameters 

•  Different for each compiler.  Listed in tables 
under the ranger userguide 
–  http://www.tacc.utexas.edu/services/userguides/

ranger/ 

EM64T References 
•  High Performance Computing by Kevin Dowd and 

Charles Severance (O’Reilly book) -- general 
study of high performance computing 

•  TACC Lonestar User Guide 
 www.tacc.utexas.edu/resources/userguides/ 

•  Intel documentation for Intel compilers and MKL 
library 

 /opt/intel/compiler9.1/   /doc 
 /opt/intel/mkl9.0/doc 

cc 
fc 
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MPI Stacks on Ranger 
MPI Family Compiler

 Support MPI1-1 Full
 MPI-2 Notes 

mvapich/1.0 

pgi 
intel/9.1 
intel/10.1 

➼ X 

This is the current
 recommended stack
 for large scale
 analysis on Ranger. 
 It has been used to
 run applications with
 O(32K) MPI tasks. 

mvapich2/1.0 

pgi 
intel/9.1 
intel/10.1 

➼ ➼ 

This supports full
 MPI-2 functionality
 with a job-startup
 mechanism that is
 recommended for job
 sizes in the range
 from 16-2048 tasks. 

openmpi/1.2.4 
pgi 
intel/9.1 
intel/10.1 ➼ ➼ 

OpenMPI also
 supports MPI-2
 semantics and is the
 successor to the
 LAM/MPI project. 

Working with Parallel Libraries 
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Why Parallel Libraries? 


   Like most programming tasks, very little 
“real” software is created by starting from a 
blank slate and coding every line of every 
algorithm (as presented in most classes, 
including this one).  


   Large scale parallel software construction 
involves significant code reuse, making use 
of libraries that encapsulate much of what 
we learned. 

Performance Libraries 

•  Optimized for specific architectures 
•  Use library routines instead of hand-coding 

your own 
•  Offered by different vendors (ESSL/PESSL 

on IBM systems, Intel MKL for IA32, 
EM64T and IA64, Cray libsci for Cray 
systems, SCSL for SGI, ACML for AMD) 
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The Beauty of Optimized Libraries 

•  Use optimized libraries 
–  In “hot spots”, never write library functions by 

hand. 
–  Numerical Recipes books DO NOT provide 

optimized code.  (Libraries can be 100x faster). 

A Few Common HPC Libraries 


   SPRNG - Parallel Random Numbers 

   FFTW - Parallel FFT (MPI, OpenMP) 

   ScaLAPack - Parallel Linear Algebra (MPI) 

   Intel Math Kernel Libraries (MKL) - Parallel 

Linear Algebra+ (OpenMP) 

   PETSc - Parallel PDEs and related 

problems (MPI) 
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FFTW 
Fastest Fourier Transform in the West 


   Supports MPI or OpenMP parallelization 
(through different interfaces) 


   1D, Multi-D, Real or Complex routines 

   Well-established, widely used and tested 

FFTs that generally are considered the 
fastest 


   Relies heavily on MPI_AlltoAll performance 

FFTW - Sequential Interface 


   The “plan” is reusable, and is a data structure containing the 
layout for the FFT (setting it up in advance is one of the things 
that makes it so fast).  


   N is the FFT size, forward is the direction, and the last argument 
is how to build the plan:  “estimate” is a best guess, “measure” 
will run a few different sizes and actually test at runtime for the 
optimal layout.  

#include <fftw.h>

...

{

     fftw_complex in[N], out[N];

     fftw_plan p;

     ...

     p = fftw_create_plan(N, FFTW_FORWARD, FFTW_ESTIMATE);

     ...

     fftw_one(p, in, out);

     ...

     fftw_destroy_plan(p);  

}
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FFTW MPI Interface 


   Add MPI_Init 
and Finalize, 
add 
communicator 
to “plan” 
argument 


   FFTW done “in 
place”, so data 
ordering must 
be correct.  

#include <fftw_mpi.h>


int main(int argc, char **argv)

{

      const int NX = ..., NY = ...;

      fftwnd_mpi_plan plan;

      fftw_complex *data;


      MPI_Init(&argc,&argv);


      plan = fftw2d_mpi_create_plan(MPI_COMM_WORLD,

                                    NX, NY,

                                    FFTW_FORWARD, FFTW_ESTIMATE);


      ...allocate and initialize data...


      fftwnd_mpi(p, 1, data, NULL, FFTW_NORMAL_ORDER);


      ...


      fftwnd_mpi_destroy_plan(plan);

      MPI_Finalize();

}


FFTW Data Layout 


   A portion of FFT data must reside locally 
on each processor. 


   Divided by blocks of rows (first 
dimension) 


   The function above returns the data that 
should/will be on the local process 

void fftwnd_mpi_local_sizes(fftwnd_mpi_plan p,

                            int *local_nx,

                            int *local_x_start,

                            int *local_ny_after_transpose,

                            int *local_y_start_after_transpose,

                            int *total_local_size);
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FFTW Data Layout 
The following is an example of allocating such a three-dimensional array  
(local_data) before the transform and initializing it to some function f(x,y,z):

   fftwnd_mpi_local_sizes(plan, &local_nx, &local_x_start,


                           &local_ny_after_transpose,


                           &local_y_start_after_transpose,


                           &total_local_size);


   local_data = (fftw_complex*) malloc(sizeof(fftw_complex) *  
total_local_size);


    for (x = 0; x < local_nx; ++x)


        for (y = 0; y < ny; ++y)


          for (z = 0; z < nz; ++z)


           local_data[(x*ny + y)*nz + z] = f(x + local_x_start, y, z);


#include <rfftw_mpi.h>

int main(int argc, char **argv)

{

     const int nx = ..., ny = ..., nz = ...;

     int local_nx, local_x_start, local_ny_after_transpose,

         local_y_start_after_transpose, total_local_size;

     int x, y, z;

     rfftwnd_mpi_plan plan, iplan;

     fftw_real *data, *work;

     fftw_complex *cdata;


     MPI_Init(&argc,&argv);

    /* create the forward and backward plans: */


     plan = rfftw3d_mpi_create_plan(MPI_COMM_WORLD, nx, ny, 
nz, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE);


     iplan = rfftw3d_mpi_create_plan(MPI_COMM_WORLD,

  /* dim.'s of REAL data --> */ 

   nx, ny, nz, FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE);
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rfftwnd_mpi_local_sizes(plan, &local_nx, &local_x_start,                            
&local_ny_after_transpose, &local_y_start_after_transpose, 
&total_local_size);


 data = (fftw_real*) malloc(sizeof(fftw_real) total_local_size);


/* workspace is the same size as the data: */


work = (fftw_real*) malloc(sizeof(fftw_real) *total_local_size);


    /* initialize data to f(x,y,z): */

     for (x = 0; x < local_nx; ++x)

          for (y = 0; y < ny; ++y)

               for (z = 0; z < nz; ++z)

                 data[(x*ny + y) * (2*(nz/2+1)) + z] = f(x + 
local_x_start, y, z);


  /* Now, compute the forward transform: */

  rfftwnd_mpi(plan, 1, data, work, FFTW_TRANSPOSED_ORDER);


/* the data is now complex, so typecast a pointer: */

  cdata = (fftw_complex*) data;


     /* multiply imaginary part by 2, for fun:

        (note that the data is transposed) */

     for (y = 0; y < local_ny_after_transpose; ++y)

           for (x = 0; x < nx; ++x)

               for (z = 0; z < (nz/2+1); ++z)

                 cdata[(y*nx + x) * (nz/2+1) + z].im *= 2.0;


     /* Finally, compute the inverse transform; the result

        is transposed back to the original data layout: */

  rfftwnd_mpi(iplan, 1, data, work, FFTW_TRANSPOSED_ORDER);


     free(data);

     free(work);

     rfftwnd_mpi_destroy_plan(plan);

     rfftwnd_mpi_destroy_plan(iplan);

     MPI_Finalize();

}
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FFTW MPI Tuning 
•  If possible, the first and second dimensions of your 

data should be divisible by the number of processes  
–  (If only one can be divisible, then you should choose the first 

dimension.)  
–  This allows the computational load to be spread evenly 

among the processes. 
•  You should consider the FFTW_TRANSPOSED_ORDER 

output format if it is not too burdensome.  
–  The speed gains from communications savings are usually 

substantial. 

FFTW MPI Tuning 
•  You should consider allocating a workspace for (r)fftw(nd)_mpi, 

as this can often (but not always) improve performance (at the 
cost of extra storage). 

•  You should experiment with the best number of processors to 
use for your problem.  
–  (There comes a point of diminishing returns, when the communications 

costs outweigh the computational benefits).  
–  The fftw_mpi_test program can output helpful performance benchmarks. 

It accepts the same parameters as the uniprocessor test programs and is 
run like an ordinary MPI program.  

–  For example, mpirun -np 4 fftw_mpi_test -s 128x128x128 will benchmark 
a 128x128x128 transform on four processors,  



17 

ScaLAPACK 


   Scalable Linear Algebra PACKage 

   MPI Extensions to the venerable 

LAPACK library(extended from 
LINPACK); most used linear algebra 
library of all time. 


   Routines for solving systems of linear 
equations, least squares problems, and 
eigenvalue problems. 


   Built on BLAS and BLACS 
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BLAS Implementations 


   While a BLAS/BLACS is distributed with 
ScaLAPACK, there are many 
interchangeable implementations. 


   Three most widely used: MKL (Intel), 
Goto (UT-Austin), ATLAS (the other UT 
---Knoxville) 

BLAS  

   ATLAS, or the Automatically Tuned Linear Algebra 

Subprograms, build, test, and re-build themselves at 
install time to match the particular behaviour of a 
processor (e.g. register size and cache tuning, SSE 
instructions, etc).   


   Goto uses hand-tuned assembly to tweak performance; 
This guy (K. Goto) really lives for this stuff, and the 
performance gap over “naive code” is amazing. 


   Intel’s Math Kernel Libraries (BLAS and other things) 
are tuned for each Intel microarchitecture for max 
performance. 


   Unlike your program, these libraries can tell a Nocona 
from a Paxville from a Woodcrest (you’d call all of those 
“Xeon”).  
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Transparent threading with MKL 


   OpenMP support is 
built into MKL 


   Unmodified programs 
can use OMP inside 
the routines to get 
speedup based only 
on an environment 
variable. 


   Of course, you must 
have idle processors 
available to make use 
of this... 

#include <stdio.h>	
#include <math.h>	
#include <time.h>	
#include "mkl_cblas.h"	

int main(int argc, char *argv[])	
{	
     int lda,ldb,ldc;	
     double *A, *B, *x, *C;	
     int size, i, j, count;	
     double ALPHA, BETA;	
	double clock_c, clock_t;	

     ALPHA = 1.0;	
     BETA = 1.0;	
	clock_t = 0.0;	

     if(argc < 3) { printf("No input specified\n"); return 1; }	

     size = atoi(argv[1]);	
     count = atoi(argv[2]);	

     printf("Running %d x %d for %d\n", size, size, count);	
     A = (double*)malloc(sizeof(double) * size * size);	
     B = (double*)malloc(sizeof(double) * size * size);	
	C = (double*)malloc(sizeof(double) * 1024 * 1024  * 4);	

     x = (double*)malloc(sizeof(double) * size * size);


Transparent threading with MKL 

        for(; count > 0; count--) {	
                for(i = 0; i < size; i++) {	
                        for(j = 0; j < size; j++) {	
                                A[i*size + j] = i*j;	
                                B[i*size + j] = i*j;	
                        }	
                }	
	 	//TRASH CACHE	
	 	for(i = 0; i < 1024*1024 * 4; i++) {	
	 	 	C[i]++;	
	 	}	
	 	clock_c = clock();	

     cblas_dgemm( CblasRowMajor, CblasNoTrans, CblasNoTrans, size, size, size,	
ALPHA, A, size,B, size, BETA, x, size);	
	 	clock_t += clock() - clock_c;	

  }	
	 	printf("Runtime: %f\n" ,clock_t);	
        return 0;	
}	
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MKL/OMP performance 
Compile: 
icc -openmp -I/opt/intel/ict/3.0/cmkl/9.0/include/  
-L/opt/intel/ict/3.0/c mkl/9.0/lib/em64t/  -o nopar nopar.c -lm -lmkl 

Run: 
# Exe Size(1 dim) #Repeat 
./nopar 1024       6 

Runtimes: 
[saguaro-9-1 cannon]$ for i in 8 4 2 1; do echo "Number of 
threads: $i"; OMP_NUM_THREADS=$i time ./nopar 4096 1; done 

Number of threads: 8 
Running 4096 x 4096 for 1 
4096x4096 
8: 583% CPU,  4.33s 
4: 354% CPU,  4.90s 
2: 194% CPU,  7.88s 
1:  99% CPU, 14.97s


GotoBLAS 

•  High-Performance Matrix Multiplication 
Routines 

•  Overhead comes from Translation Look-aside 
Buffer (TLB) table misses 

•  Minimization of such TLB misses that drives 
the approach.  
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GotoBLAS EM64T Woodcrest 
Performance 

DGEMM on Lonestar (single threaded)
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GOTO MKL 9.0

GotoBLAS EM64T Woodcrest 
Performance 

DGEMM on Lonestar (two threads)
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GOTO MKL 9.0
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GotoBLAS EM64T Woodcrest 
Performance 

DGEMM on Lonestar (four threads)
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GOTO MKL 9.0

Using the GotoBLAS Module 

•  Module load gotoblas 
mpicc test.c –L/$TACC_GOTOBLAS_LIB/

libgotoblas64.a 

•  Supplementing MKL Libraries with GotoBLAS 
–  Add gotoBLAS first, then MKL 

 Module load gotoblas 
 Module load mkl 

mpicc -I$TACC_MKL_INC mkl_test.c \ 
          -L$TACC_GOTOBLAS_LIB/libgotoblas64.a  \ 
          -L$TACC_MKL_LIB \ 
          -lmkl_em64t –lmkl_lapack64 
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GotoBLAS References 

•  Kazushige Goto 
–  http://www.tacc.utexas.edu/general/staff/goto/ 

•  GotoBLAS 
–  http://www.tacc.utexas.edu/resources/software/ 

Intel MKL 9.0 (Math Kernel Library) 

•  Optimized for the IA32, EM64T, IA64 
architectures 

•  supports both Fortran and C interfaces 
•  Includes functions in the following areas: 

–  BLAS (levels 1-3) 
–  LAPACK 
–  FFT routines 
–  … others 
–  Vector Math Library (VML) 
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Intel MKL 9.0 (Math Kernel Library)  

•  Enabling MKL 
–  Module load mkl 

•  Example Compile 

mpicc -I$TACC_MKL_INC mkl_test.c    -L$TACC_MKL_LIB  -lmkl_em64t 
mpif90                               mkl_test.f90 -L$TACC_MKL_LIB  -lmkl_em64t 


