
1

Program
Optimization

and Parallel Libraries

Dan Stanzione
Arizona State University

July 14, 2008

Outline
Two talks in one:

•  EM64T/Opteron compiler optimizations
1.  Using Parallel Libraries

2

Compilers and Optimization

•  “The compiler now does a very good job of
optimizing code so you don’t have to.”

•  But, program developers should ensure that
their codes are adaptable to hardware
evolution and are scalable.

Optimization Level: –On

•  -O0 no optimization: Fast compilation, disables
optimization

•  -O1 optimization for speed, keeps code size
small

•  -O2 low to moderate optimization: partial
debugging support, disables inlining

•  -O3 aggressive optimization: compile time/
space intensive and/or marginal effectiveness;
may change code semantics and results
(sometimes even breaks codes!)

3

Divide performance* comparison

Compiler option #cycles/iteration

None 30.0

-O2 15.7

-O3 -qhot 12.7

* on Champion

Optimization Levels
•  Operations performed at moderate optimization

levels
–  instruction rescheduling
–  copy propagation
–  software pipelining
–  common subexpression elimination
–  prefetching, loop transformations

•  Operations performed at aggressive
optimization levels
–  enables –O3
–  more aggressive prefetching, loop transformations

4

What are all these Optimizations?
•  Common Subexpression elimination

–  X= (a+b)- (a+b)/4
–  Why do (a+b) twice? Save in a temp register

•  Copy Propagation
–  y=x
–  z=y+3
–  Is optimized to:
–  z=x+3
–  This saves registers, space
–  Required cleanup after other opimizations

What are all these Optimizations?
•  Software Pipelining

–  If you had
for i = 1 to bignumber

A(i) //Some statement using A(i)

B(I)

C(i)

end

•  Also an example of “loop unrolling”

–  Rewrite as:
for i = 1 to (bignumber

- 2) step 3

A(i)

A(i+1)

A(i+2)

B(i)

B(i+1)

B(i+2)

C(i)

C(i+1)

C(i+2)

end

5

Intel Compiler Options I
Processor-specific optimization options:
 -xT generates specialized code for EM64T, includes SSE4

Other optimization options:
 -mp maintain floating point precision (disables some optimizations)
 -mp1 improve floating-point precision (speed impact is less than -mp).
 -ip enable single-file interprocedural (IP) optimizations

 (within files). Line numbers produced for debugging
 -ipo enable multi-file IP optimizations (between files)

Intel Compiler Options II
Other options:
-g debugging information, generates symbol table
-strict_ansi strict ANSI compliance
-C enable extensive runtime error checking (-CA, -CB, -CS, -

 CU, -CV)
-convert <kwd> specify file format

 keyword: big_endian, cray, ibm, little_endian, native, vaxd,
-openmp enable the parallelizer to generate multi-threaded code

 based on the OpenMP directives.
-static create a static executable for serial applications. MPI

 applications compiled on Lonestar cannot be built statically.

6

Intel Compiler - Best Practice
•  Normal compiling

 ifort –O3 –xT test.c
•  Try compiling at -O3 -xT.
•  If code breaks or gives wrong answers with -O3 xT,

first try –mp (maintain precision).
•  O2 is default opt, compile with –O0 if this breaks

(very rare)
•  -xT can include optimizations and may break some

codes
•  Don’t include debug options for a production compile!

 ifort –O2 –g –CB test.c

Optimizations for Ranger AMD Opteron
System

•  Ranger supports many compiler flavors and
similar installed libraries as other production
systems at TACC
–  We understand that some applications can be

faster when compiled with different compilers on
different architectures

–  Alternate compilers allows for more freedom for
specialty additions not supported by other venders

7

Compiling on Ranger

•  Intel: icc/ifort -o flamec.exe -O3 -xW prog.c/
cc/f90

•  PGI: pgcc/pgcpp/pgf95 -o flamef.exe -fast -tp
barcelona-64 prog.c/cc/f90gnu

•  GCC: gcc -o flamef.exe -mtune=barcelona -
march=barcelona prog.c

•  Sun: sun_cc/sun_CC/sunf90 -o flamef.exe -
xarch=sse2 prog.c/cc/f90

PGI Compilers

•  -03
–  performs some compile time and memory intensive optimizations in addition

to those executed with -O2, but may not improve performance for all
programs.-

•  Mipa=fast
–  Interprocedural optimizations There is a loader problem with this option.

•  -tp barcelona-64
–  includes specialized code for the barcelona chip.

•  -fast
–  -O2 -Munroll=c:1 -Mnoframe -Mlre -Mautoinline -Mvect=sse -Mscalarsse -

Mcache_align -Mflushz
•  -mp

–  enable the parallelizer to generate multi-threaded code based on the
OpenMP directives

•  ‑Minfo=mp,ipa
–  Information about OpenMP, interprocedural optimization‑helplists options

8

Tuning Parameters

•  Different for each compiler. Listed in tables
under the ranger userguide
–  http://www.tacc.utexas.edu/services/userguides/

ranger/

EM64T References
•  High Performance Computing by Kevin Dowd and

Charles Severance (O’Reilly book) -- general
study of high performance computing

•  TACC Lonestar User Guide
 www.tacc.utexas.edu/resources/userguides/

•  Intel documentation for Intel compilers and MKL
library

 /opt/intel/compiler9.1/ /doc
 /opt/intel/mkl9.0/doc

cc
fc

9

MPI Stacks on Ranger
MPI Family Compiler

 Support MPI1-1 Full
 MPI-2 Notes

mvapich/1.0

pgi
intel/9.1
intel/10.1

➼ X

This is the current
 recommended stack
 for large scale
 analysis on Ranger.
 It has been used to
 run applications with
 O(32K) MPI tasks.

mvapich2/1.0

pgi
intel/9.1
intel/10.1

➼ ➼

This supports full
 MPI-2 functionality
 with a job-startup
 mechanism that is
 recommended for job
 sizes in the range
 from 16-2048 tasks.

openmpi/1.2.4
pgi
intel/9.1
intel/10.1 ➼ ➼

OpenMPI also
 supports MPI-2
 semantics and is the
 successor to the
 LAM/MPI project.

Working with Parallel Libraries

10

Why Parallel Libraries?

   Like most programming tasks, very little
“real” software is created by starting from a
blank slate and coding every line of every
algorithm (as presented in most classes,
including this one).

   Large scale parallel software construction
involves significant code reuse, making use
of libraries that encapsulate much of what
we learned.

Performance Libraries

•  Optimized for specific architectures
•  Use library routines instead of hand-coding

your own
•  Offered by different vendors (ESSL/PESSL

on IBM systems, Intel MKL for IA32,
EM64T and IA64, Cray libsci for Cray
systems, SCSL for SGI, ACML for AMD)

11

The Beauty of Optimized Libraries

•  Use optimized libraries
–  In “hot spots”, never write library functions by

hand.
–  Numerical Recipes books DO NOT provide

optimized code. (Libraries can be 100x faster).

A Few Common HPC Libraries

   SPRNG - Parallel Random Numbers

   FFTW - Parallel FFT (MPI, OpenMP)

   ScaLAPack - Parallel Linear Algebra (MPI)

   Intel Math Kernel Libraries (MKL) - Parallel

Linear Algebra+ (OpenMP)

   PETSc - Parallel PDEs and related

problems (MPI)

12

FFTW
Fastest Fourier Transform in the West

   Supports MPI or OpenMP parallelization
(through different interfaces)

   1D, Multi-D, Real or Complex routines

   Well-established, widely used and tested

FFTs that generally are considered the
fastest

   Relies heavily on MPI_AlltoAll performance

FFTW - Sequential Interface

   The “plan” is reusable, and is a data structure containing the
layout for the FFT (setting it up in advance is one of the things
that makes it so fast).

   N is the FFT size, forward is the direction, and the last argument
is how to build the plan: “estimate” is a best guess, “measure”
will run a few different sizes and actually test at runtime for the
optimal layout.

#include <fftw.h>

...

{

 fftw_complex in[N], out[N];

 fftw_plan p;

 ...

 p = fftw_create_plan(N, FFTW_FORWARD, FFTW_ESTIMATE);

 ...

 fftw_one(p, in, out);

 ...

 fftw_destroy_plan(p);

}

13

FFTW MPI Interface

   Add MPI_Init
and Finalize,
add
communicator
to “plan”
argument

   FFTW done “in
place”, so data
ordering must
be correct.

#include <fftw_mpi.h>

int main(int argc, char **argv)

{

 const int NX = ..., NY = ...;

 fftwnd_mpi_plan plan;

 fftw_complex *data;

 MPI_Init(&argc,&argv);

 plan = fftw2d_mpi_create_plan(MPI_COMM_WORLD,

 NX, NY,

 FFTW_FORWARD, FFTW_ESTIMATE);

 ...allocate and initialize data...

 fftwnd_mpi(p, 1, data, NULL, FFTW_NORMAL_ORDER);

 ...

 fftwnd_mpi_destroy_plan(plan);

 MPI_Finalize();

}

FFTW Data Layout

   A portion of FFT data must reside locally
on each processor.

   Divided by blocks of rows (first
dimension)

   The function above returns the data that
should/will be on the local process

void fftwnd_mpi_local_sizes(fftwnd_mpi_plan p,

 int *local_nx,

 int *local_x_start,

 int *local_ny_after_transpose,

 int *local_y_start_after_transpose,

 int *total_local_size);

14

FFTW Data Layout
The following is an example of allocating such a three-dimensional array
(local_data) before the transform and initializing it to some function f(x,y,z):

 fftwnd_mpi_local_sizes(plan, &local_nx, &local_x_start,

 &local_ny_after_transpose,

 &local_y_start_after_transpose,

 &total_local_size);

 local_data = (fftw_complex*) malloc(sizeof(fftw_complex) *
total_local_size);

 for (x = 0; x < local_nx; ++x)

 for (y = 0; y < ny; ++y)

 for (z = 0; z < nz; ++z)

 local_data[(x*ny + y)*nz + z] = f(x + local_x_start, y, z);

#include <rfftw_mpi.h>

int main(int argc, char **argv)

{

 const int nx = ..., ny = ..., nz = ...;

 int local_nx, local_x_start, local_ny_after_transpose,

 local_y_start_after_transpose, total_local_size;

 int x, y, z;

 rfftwnd_mpi_plan plan, iplan;

 fftw_real *data, *work;

 fftw_complex *cdata;

 MPI_Init(&argc,&argv);

 /* create the forward and backward plans: */

 plan = rfftw3d_mpi_create_plan(MPI_COMM_WORLD, nx, ny,
nz, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE);

 iplan = rfftw3d_mpi_create_plan(MPI_COMM_WORLD,

 /* dim.'s of REAL data --> */

 nx, ny, nz, FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE);

15

rfftwnd_mpi_local_sizes(plan, &local_nx, &local_x_start,
&local_ny_after_transpose, &local_y_start_after_transpose,
&total_local_size);

 data = (fftw_real*) malloc(sizeof(fftw_real) total_local_size);

/* workspace is the same size as the data: */

work = (fftw_real*) malloc(sizeof(fftw_real) *total_local_size);

 /* initialize data to f(x,y,z): */

 for (x = 0; x < local_nx; ++x)

 for (y = 0; y < ny; ++y)

 for (z = 0; z < nz; ++z)

 data[(x*ny + y) * (2*(nz/2+1)) + z] = f(x +
local_x_start, y, z);

 /* Now, compute the forward transform: */

 rfftwnd_mpi(plan, 1, data, work, FFTW_TRANSPOSED_ORDER);

/* the data is now complex, so typecast a pointer: */

 cdata = (fftw_complex*) data;

 /* multiply imaginary part by 2, for fun:

 (note that the data is transposed) */

 for (y = 0; y < local_ny_after_transpose; ++y)

 for (x = 0; x < nx; ++x)

 for (z = 0; z < (nz/2+1); ++z)

 cdata[(y*nx + x) * (nz/2+1) + z].im *= 2.0;

 /* Finally, compute the inverse transform; the result

 is transposed back to the original data layout: */

 rfftwnd_mpi(iplan, 1, data, work, FFTW_TRANSPOSED_ORDER);

 free(data);

 free(work);

 rfftwnd_mpi_destroy_plan(plan);

 rfftwnd_mpi_destroy_plan(iplan);

 MPI_Finalize();

}

16

FFTW MPI Tuning
•  If possible, the first and second dimensions of your

data should be divisible by the number of processes
–  (If only one can be divisible, then you should choose the first

dimension.)
–  This allows the computational load to be spread evenly

among the processes.
•  You should consider the FFTW_TRANSPOSED_ORDER

output format if it is not too burdensome.
–  The speed gains from communications savings are usually

substantial.

FFTW MPI Tuning
•  You should consider allocating a workspace for (r)fftw(nd)_mpi,

as this can often (but not always) improve performance (at the
cost of extra storage).

•  You should experiment with the best number of processors to
use for your problem.
–  (There comes a point of diminishing returns, when the communications

costs outweigh the computational benefits).
–  The fftw_mpi_test program can output helpful performance benchmarks.

It accepts the same parameters as the uniprocessor test programs and is
run like an ordinary MPI program.

–  For example, mpirun -np 4 fftw_mpi_test -s 128x128x128 will benchmark
a 128x128x128 transform on four processors,

17

ScaLAPACK

   Scalable Linear Algebra PACKage

   MPI Extensions to the venerable

LAPACK library(extended from
LINPACK); most used linear algebra
library of all time.

   Routines for solving systems of linear
equations, least squares problems, and
eigenvalue problems.

   Built on BLAS and BLACS

18

BLAS Implementations

   While a BLAS/BLACS is distributed with
ScaLAPACK, there are many
interchangeable implementations.

   Three most widely used: MKL (Intel),
Goto (UT-Austin), ATLAS (the other UT
---Knoxville)

BLAS

   ATLAS, or the Automatically Tuned Linear Algebra

Subprograms, build, test, and re-build themselves at
install time to match the particular behaviour of a
processor (e.g. register size and cache tuning, SSE
instructions, etc).

   Goto uses hand-tuned assembly to tweak performance;
This guy (K. Goto) really lives for this stuff, and the
performance gap over “naive code” is amazing.

   Intel’s Math Kernel Libraries (BLAS and other things)
are tuned for each Intel microarchitecture for max
performance.

   Unlike your program, these libraries can tell a Nocona
from a Paxville from a Woodcrest (you’d call all of those
“Xeon”).

19

Transparent threading with MKL

   OpenMP support is
built into MKL

   Unmodified programs
can use OMP inside
the routines to get
speedup based only
on an environment
variable.

   Of course, you must
have idle processors
available to make use
of this...

#include <stdio.h>	
#include <math.h>	
#include <time.h>	
#include "mkl_cblas.h"	

int main(int argc, char *argv[])	
{	
 int lda,ldb,ldc;	
 double *A, *B, *x, *C;	
 int size, i, j, count;	
 double ALPHA, BETA;	
	double clock_c, clock_t;	

 ALPHA = 1.0;	
 BETA = 1.0;	
	clock_t = 0.0;	

 if(argc < 3) { printf("No input specified\n"); return 1; }	

 size = atoi(argv[1]);	
 count = atoi(argv[2]);	

 printf("Running %d x %d for %d\n", size, size, count);	
 A = (double*)malloc(sizeof(double) * size * size);	
 B = (double*)malloc(sizeof(double) * size * size);	
	C = (double*)malloc(sizeof(double) * 1024 * 1024 * 4);	

 x = (double*)malloc(sizeof(double) * size * size);

Transparent threading with MKL

 for(; count > 0; count--) {	
 for(i = 0; i < size; i++) {	
 for(j = 0; j < size; j++) {	
 A[i*size + j] = i*j;	
 B[i*size + j] = i*j;	
 }	
 }	
	 	//TRASH CACHE	
	 	for(i = 0; i < 1024*1024 * 4; i++) {	
	 	 	C[i]++;	
	 	}	
	 	clock_c = clock();	

 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, size, size, size,	
ALPHA, A, size,B, size, BETA, x, size);	
	 	clock_t += clock() - clock_c;	

 }	
	 	printf("Runtime: %f\n" ,clock_t);	
 return 0;	
}	

20

MKL/OMP performance
Compile: 
icc -openmp -I/opt/intel/ict/3.0/cmkl/9.0/include/  
-L/opt/intel/ict/3.0/c mkl/9.0/lib/em64t/ -o nopar nopar.c -lm -lmkl 

Run: 
Exe Size(1 dim) #Repeat 
./nopar 1024 6 

Runtimes: 
[saguaro-9-1 cannon]$ for i in 8 4 2 1; do echo "Number of 
threads: $i"; OMP_NUM_THREADS=$i time ./nopar 4096 1; done 

Number of threads: 8 
Running 4096 x 4096 for 1 
4096x4096 
8: 583% CPU, 4.33s 
4: 354% CPU, 4.90s 
2: 194% CPU, 7.88s 
1: 99% CPU, 14.97s

GotoBLAS

•  High-Performance Matrix Multiplication
Routines

•  Overhead comes from Translation Look-aside
Buffer (TLB) table misses

•  Minimization of such TLB misses that drives
the approach.

21

GotoBLAS EM64T Woodcrest
Performance

DGEMM on Lonestar (single threaded)

0
1200

2400
3600
4800
6000

7200
8400
9600

10800
12000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Matrix Order

M
Fl

op
s

GOTO MKL 9.0

GotoBLAS EM64T Woodcrest
Performance

DGEMM on Lonestar (two threads)

0
2400

4800
7200
9600

12000

14400
16800
19200

21600
24000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Matrix Order

M
Fl

op
s

GOTO MKL 9.0

22

GotoBLAS EM64T Woodcrest
Performance

DGEMM on Lonestar (four threads)

0
4800

9600
14400

19200
24000

28800
33600

38400
43200

48000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Matrix Order

M
Fl

op
s

GOTO MKL 9.0

Using the GotoBLAS Module

•  Module load gotoblas
mpicc test.c –L/$TACC_GOTOBLAS_LIB/

libgotoblas64.a

•  Supplementing MKL Libraries with GotoBLAS
–  Add gotoBLAS first, then MKL

 Module load gotoblas
 Module load mkl

mpicc -I$TACC_MKL_INC mkl_test.c \
 -L$TACC_GOTOBLAS_LIB/libgotoblas64.a \
 -L$TACC_MKL_LIB \
 -lmkl_em64t –lmkl_lapack64

23

GotoBLAS References

•  Kazushige Goto
–  http://www.tacc.utexas.edu/general/staff/goto/

•  GotoBLAS
–  http://www.tacc.utexas.edu/resources/software/

Intel MKL 9.0 (Math Kernel Library)

•  Optimized for the IA32, EM64T, IA64
architectures

•  supports both Fortran and C interfaces
•  Includes functions in the following areas:

–  BLAS (levels 1-3)
–  LAPACK
–  FFT routines
–  … others
–  Vector Math Library (VML)

24

Intel MKL 9.0 (Math Kernel Library)

•  Enabling MKL
–  Module load mkl

•  Example Compile

mpicc -I$TACC_MKL_INC mkl_test.c -L$TACC_MKL_LIB -lmkl_em64t
mpif90 mkl_test.f90 -L$TACC_MKL_LIB -lmkl_em64t

