
1

TACC Linux User Environment
LSF/SGE Batch Schedulers

Karl W. Schulz

Texas Advanced Computing Center
The University of Texas at Austin

UT/Portugal Summer Institute Training
Coimbra, Portugal

July 14, 2008

Outline

•  Linux Clusters, HPC Software
•  Initial Login
•  Startup Scripts & Modules
•  User Environment
•  LSF Batch System
•  SGE Batch System
•  Intel Compilers
•  Communication Switches and Libraries
•  Libraries / Performance Tools
•  System & Memory Information
•  Moving Files Between Systems
•  Little and Big Endians

2

Generic Cluster Architecture

File
Server

PC+

internet

PC+

Server

PC PC PC PC

Switch

…

Ethernet
Myrinet, IB, Quadrics, ...
FCAL, SCSI,…

lonestar.tacc.utexas.edu

(Adv. HPC System)

Switch

GigE,
Infiniband

HPC Software Components

•  Major HPC Software Components
–  Batch System (production)
–  Interactive Utility (development)
–  High Speed Interconnects
–  Communication Library
–  Compilers
–  Advanced Math Libraries
–  Large Parallel File Systems
–  Monitoring Utilities
–  Multi-user Environment

3

Initial Login (Ranger)
•  Login with SSH

 ssh ranger.tacc.utexas.edu

•  Connects you to
login3.ranger.tacc.utexas.edu or
login4.ranger.tacc.utexas.edu

•  Please don’t overwrite ~/.ssh/authorized_keys
–  Feel free to add to it if you know what it’s for
–  SSH used for job start up on the compute nodes,

mistakes can prevent your jobs from running

Available File Systems (Lonestar)

Scratch
Home

Ranch

PowerEdge 1955
2 Dual-Core CPUs

NFS
Local

Compute

Node

Work

Lustre

All Nodes

rcp/scp/ftp only

Lustre

4

(Use the aliases cd, and cdw to change directory to
 $HOME and $WORK respectively.)

File System Access & Lifetime Table
(lonestar)

Job Duration ~56GB $SCRATCH

Life Time User Access Limit Environment
Variables

Project Allocated SAN

Project Unlimited $ARCHIVE

10 Days 100TB/ no quota $WORK

Project 200 MB quota $HOME

Available File Systems (Ranger)

Scratch
Home

Ranch

SunBlade x6420
4 Quad-Core CPUs

NFS
Local

Compute

Node

Work

Lustre

All Nodes

rcp/scp/ftp only

Work

5

(Use the aliases cd, cdw, and cds to change directory to
 $HOME, $WORK and $SCRATCH respectively.)

File System Access & Lifetime Table (Ranger)

10 Days ~400TB $SCRATCH

Life Time User Access Limit Environment
Variables

Project Allocated SAN

Project Unlimited $ARCHIVE

Project ~40GB quota $WORK

Project ~2.5GB quota $HOME

Startup Scripts & Modules

•  Login shell is set with “chsh”
–  Takes some time to propagate (~1 hour)

•  Each shell “sources” a set of scripts:

/etc/profile.d/<xxx>.sh

Bourne-type scripts: Bourne, Korn, Bash Shells

/etc/profile

/usr/local/etc/profile

$HOME/.profile

$HOME/.profile_user

6

Startup Scripts & Modules

/etc/profile.d/<xxx>.csh

csh scripts for C-shell type shells: csh, tcsh

/etc/csh.cshrc

/usr/local/etc/cshrc

$HOME/.cshrc

$HOME/.cshrc_user

login scripts for C-shell type shells: csh, tcsh

/etc/csh.login

/usr/local/etc/login

$HOME/.login

$HOME/.login_user

Modules
•  Modules are used to setup and remove various environment variables along with PATH,

LD_LIBRARY_PATH declarations

•  They are used to setup environments for packages & compilers.

lslogin1% module {lists options}
lslogin1% module list {lists loaded modules}
lslogin1% module avail {lists available modules}
lslogin1% module del <module> {removes a module}
lslogin1% module add <module> {add a module}
lslogin1% module switch <mod1> <mod2> {switch modules}

Currently available modules on Lonestar: lslogin1$ module avail

----------------------- /opt/intel9/modulefiles ------------------
mvapich-gen2/0.9.8 petsc/2.3.1-cxx petsc/2.3.1-debug
petsc/2.3.1 petsc/2.3.1-cxxdebug

----------------------- /opt/modulefiles -------------------------
Linux gromacs/3.3.1 netcdf/3.6.1
TACC hdf4/2r1 papi/3.2.1
amber/8 hdf5/1.6.5 plapack/3.0
amgr/2.0 intel/9.1 pmetis/3.1
binutils/2.17 java/1.4.2 scalapack/1.7
cluster kojak/2.1.1 sprng/2.0
ddt/1.10 launcher/1.1 tacc-binutils/2.17
fftw/2.1.5 metis/4.0 tau/2.15.3
fftw/3.1.1 mkl/8.1 gamess/02_2006
gotoblas/1.02

7

Modules
•  Modules often define environment variables for convenient access to binaries, libraries, include files,

and documentation

•  See individual module’s help for more information (and suggestions on linking against 3rd party

libraries). For example: lslogin1$ module help mkl
 ----------- Module Specific Help for 'mkl/8.1' --------------------

 The MKL module file defines the following environment variables:
 TACC_MKL_DIR, TACC_MKL_DOC, TACC_MKL_LIB, and TACC_MKL_INC for
 the location of the Intel MKL distribution, documentation,
 libraries, and include files, respectively.

 To use the MKL library, compile the source code with the option:
 -I$TACC_MKL_INC
 and add the following options to the link step:
 -Wl,-rpath,$TACC_MKL_LIB -L$TACC_MKL_LIB -lmkl_em64t
 The -Wl,-rpath,$TACC_MKL_LIB option is not required, however,
 if it is used, then this module will not have to be loaded
 to run the program during future login sessions.

 Here is an example command to compile mkl_test.c:
 mpicc -Wl,-rpath,$TACC_MKL_LIB -I$TACC_MKL_INC mkl_test.c

 -L$TACC_MKL_LIB -lmkl_em64t

Batch Submission Process
internet

Server

Head

C1 C2 C3 C4
Submission:
bsub < job
qsub job

 Queue: Job Script waits for resources on Server
 Master: Compute Node that executes the job

 script, launches ALL MPI processes

 Launch: ssh to each compute node to start
 executable (e.g. a.out)

 Launch
 mpirun

Master

Queue

Compute Nodes

mpirun –np # ./a.out

ibrun ./a.out

8

Batch Systems
•  Lonestar uses Platform LSF for both the batch queuing system and scheduling

mechanism (provides similar functionality to PBS)
–  LSF includes global fairshare, a mechanism for ensuring no one user monopolizes the

computing resources

•  Ranger uses Sun GridEngine (SGE) for both the batch queuing system and
scheduling mechanism

•  Batch jobs are submitted on the front end and are subsequently executed on
compute nodes as resources become available

•  Order of job execution depends on a variety of parameters:
–  Submission Time
–  Queue Priority: some queues have higher priorities than others
–  Backfill Opportunities: small jobs may be back-filled while waiting for bigger jobs to complete
–  Fairshare Priority: users who have recently used a lot of compute resources will have a lower

priority than those who are submitting new jobs
–  Advanced Reservations: jobs my be blocked in order to accommodate advanced

reservations (for example, during maintenance windows)
–  Number of Actively Scheduled Jobs: there are limits on the maximum number of concurrent

processors used by each user

Lonestar Queue Definitions

For serial jobs. No more than 4 jobs/
user 1.0 1/1 12 hours serial

24 hours

30 min

48hours

48 hours

Max
Runtime

>512

1/16

2/512

2/512

Min/Max
 Procs

1.0

1.0

1.8

1.0

SU
Charge

Rate
Use Queue Name

Debugging & development, special
priority, urgent comp. env. spruce

Special Requests request

System Use (TACC Staff only) systest

Large job submission
Requires special permission

hero

Debugging and development
Allows interactive jobs development

Higher priority usage high

Normal usage normal

9

Ranger Queue Definitions
Queue Max

Runtime
Min/Max

Procs
SU

Charge
Rate

Purpose

normal 24 hours 16/4096 1.0 Normal usage

large 24 hours 16/12288 1.0 Large job
submission

development 2 hours 2/256 1.0 Debugging and
development

serial 2 hours 1/1 1.0 Uniprocessor jobs

request > 12K Big, big jobs

systest TACC system queue

Fairshare

•  A global fairshare mechanism is implemented on Lonestar/
Ranger to provide fair access to its substantial compute
resources

•  Fairshare computes a dynamic priority for each user and uses
this priority in making scheduling decisions

•  Dynamic priority is based on the following criteria
–  Number of shares assigned
–  Resources used by jobs belonging to the user:

•  Number of job slots reserved
•  Run time of running jobs
•  Cumulative actual CPU time (not normalized), adjusted so that recently

used CPU time is weighted more heavily than CPU time used in the
distant past

10

LSF Fairshare
•  bhpart: Command to see current fairshare priority. For example:

lslogin1--> bhpart -r
HOST_PARTITION_NAME: GlobalPartition
HOSTS: all

SHARE_INFO_FOR: GlobalPartition/
USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
avijit 1 0.333 0 0 0.0 0
chona 1 0.333 0 0 0.0 0
ewalker 1 0.333 0 0 0.0 0
minyard 1 0.333 0 0 0.0 0
phaa406 1 0.333 0 0 0.0 0
bbarth 1 0.333 0 0 0.0 0
milfeld 1 0.333 0 0 2.9 0
karl 1 0.077 0 0 51203.4 0
vmcalo 1 0.000 320 0 2816754.8 7194752

P
rio

rit
y

Commonly Used LSF Commands

Shows user job information lsuser

displays historical information about jobs bhist

Displays dynamic load information for compute nodes
(avg CPU usage, memory usage, available /tmp space) lsload

Displays global fairshare priority bhpart

resumes one or more suspended jobs bresume

suspends unfinished jobs bstop

Sends signal to kill, suspend, or resume unfinished jobs bkill

Displays hosts and their static resource configuration lshosts

displays information about running and queued jobs bjobs

displays information about available queues bqueues

submits a batch job to LSF bsub

Displays configured compute nodes and their static and
dynamic resources (including job slot limits) bhosts

Note: most of these commands support a “-l” argument for long listings. Consult the man
pages for each of these commands for more information.

11

LSF Batch System
•  LSF Defined Environment Variables:

name user assigned to the job LSB_JOBNAME

batch queue to which job was submitted LSB_QUEUE

directory of submission, i.e. this variable is set
equal to $cwd when the job is submitted LS_SUBCWD

set to ‘y’ when the –I option is used with bsub LSB_INTERACTIVE

list of hosts assigned to the job. Multi-cpu hosts
will appear more than once (may get truncated) LSB_HOSTS

process id of the job LS_JOBPID

batch job id LSB_JOBID

name of the error file LSB_ERRORFILE

SGE Batch System: Env. Variables
Variable Purpose
JOB_ID Batch job id
JOB_NAME User-assigned (-J) name of the job

NSLOTS Number of slots/processes for a
parallel job

QUEUE Name of the queue the job is running in

PE Parallel environment used by the job

SGE_STDOUT_PATH
SGE_STDERR_PATH

Location of the file where standard
output/error is being written

12

LSF/SGE Batch Systems
•  Comparison of LSF, SGE and Loadleveler

commands that provide similar functionality

Loadleveler SGE LSF

qdel

qhold

qstat

qstat

qsub

qhold -r

llhold bstop

llcancel bkill

llq bjobs

llclass bqueues

llsubmit bsub

llhold -r bresume

Batch System Concepts

•  Submission (need to know)
–  Required Resources
–  Run-time Environment
–  Directory of Submission
–  Directory of Execution
–  Files for stdout/stderr Return
–  Email Notification

•  Job Monitoring
•  Job Deletion

–  Queued Jobs
–  Running Jobs

13

LSF: Basic MPI Job Script
#!/bin/csh
#BSUB -n 32
#BSUB -J hello
#BSUB -o %J.out
#BSUB -e %J.err
#BSUB -q normal
#BSUB -P A-ccsc
#BSUB -W 0:15

echo "Master Host = "`hostname`
echo "LSF_SUBMIT_DIR: $LS_SUBCWD"
echo "PWD_DIR: "`pwd`

ibrun ./hello

Total number of processes
Job name
Stdout Output file name (%J = jobID)

Submission queue

Echo pertinent
environment info

Execution command

executable Parallel application manager and mpirun wrapper script

Stderr Output file name

Your Project Name
Max Run Time (15 minutes)

LSF: Extended MPI Job Script
#!/bin/csh
#BSUB -n 32
#BSUB -J hello
#BSUB -o %J.out
#BSUB -e %J.err
#BSUB -q normal
#BSUB -P A-ccsc
#BSUB -W 0:15
#BSUB -w ‘ended(1123)'
#BSUB -u karl@tacc.utexas.edu
#BSUB -B
#BSUB -N

echo "Master Host = "`hostname`
echo "LSF_SUBMIT_DIR: $LS_SUBCWD"

ibrun ./hello

Total number of processes
Job name
Stdout Output file name (%J = jobID)

Submission queue
Stderr Output file name

Your Project Name

Email address
Email when job begins execution
Email job report information
upon completion

Dependency on Job <1123>
Max Run Time (15 minutes)

14

SGE: Basic MPI Job Script
#$ -S /bin/csh
#$ -pe 16way 32
#$ -N hello
#$ -o ${JOB_ID}J.out
#$ -e ${JOB_ID}J.err
#$ -q normal
#$ -A A-ccsc
#$ -l h_rt=00:15:00

echo "Master Host = "`hostname`
echo "LSF_SUBMIT_DIR: $LS_SUBCWD"
echo "PWD_DIR: "`pwd`

ibrun ./hello

Total number of processes
Job name
Stdout Output file name

Submission queue

Echo pertinent
environment info

Execution command

executable Parallel application manager and mpirun wrapper script

Stderr Output file name

Your Project Name
Max Run Time (15 minutes)

Job Sizing with SGE
•  You must always put a multiple of 16 next to the name of the

parallel environment

#$ -pe 16way 64 {64 tasks, 4 nodes}
#$ -pe 8way 64 {32 tasks, 4 nodes}

•  SGE doesn’t automatically handle the case where the number of
tasks you want is not a multiple of 16

•  If you want a non-multiple of 16, you may set

#$ -pe 16way 32
...
export MY_NSLOTS=23
...
ibrun ./mycode

15

SGE: Extended MPI Job Script
#$ -S /bin/csh
#$ -pe 16way 32
#$ -N hello
#$ -o ${JOB_ID}.out
#$ -e ${JOB_ID}.err
#$ -q normal
#$ -A A-ccsc
#$ -l h_rt=00:15:00
#$ -hold_jid 1123
#$ -M name@domain
#$ -m b,e

echo "Master Host = "`hostname`
echo "LSF_SUBMIT_DIR: $LS_SUBCWD"

ibrun ./hello

Total number of processes
Job name
Stdout Output file name (%J = jobID)

Submission queue
Stderr Output file name

Your Project Name

Email address
Email when job begins execution
and email job report information
upon completion

Dependency on Job <1123>
Max Run Time (15 minutes)

LSF: Job Script Submission
•  When submitting jobs to LSF using a job script, a redirection is required

for bsub to read the commands. Consider the following script:

lslogin1> cat job.script
#!/bin/csh
#BSUB -n 32
#BSUB -J hello
#BSUB -o %J.out
#BSUB -e %J.err
#BSUB -q normal
#BSUB -W 0:15
echo "Master Host = "`hostname`
echo "LSF_SUBMIT_DIR: $LS_SUBCWD“
echo "PWD_DIR: "`pwd`

ibrun ./hello

•  To submit the job:

lslogin1% bsub < job

Re-direction is required!

16

SGE: Job Script Submission
•  When submitting jobs to SGE using a job script, the script file should be

the first argument to qsub. Consider the following script:

login3$ cat job.script
#$ -S /bin/csh
#$ -pe 16way 32
#$ -N hello
#$ -o ${JOB_ID}.out
#$ -e ${JOB_ID}.err
#$ -q normal
#$ -l h_rt=00:15:00
echo "Master Host = "`hostname`
echo "LSF_SUBMIT_DIR: $LS_SUBCWD“
echo "PWD_DIR: "`pwd`

ibrun ./hello

•  To submit the job:

login3$ qsub job.script

LSF: Interactive Execution
•  Several ways to run interactively

–  Submit entire command to bsub directly:

> bsub –q development -I -n 2 -W 0:15 ibrun ./hello

Your job is being routed to the development queue
Job <11822> is submitted to queue <development>.
<<Waiting for dispatch ...>>
<<Starting on compute-1-0>>
 Hello, world!
 --> Process # 1 of 2 is alive. ->compute-1-0
 --> Process # 0 of 2 is alive. ->compute-1-0

–  Submit using normal job script and include additional -I directive:

> bsub -I < job.script

17

SGE: Memory Limits
•  Per process memory limits are enforced to ensure that physical memory

is not over-allocated.
•  Default parallel job submission allocates all 16 compute cores per node
•  If you need more memory per MPI task, you can request fewer cores per

node with the SGE parallel environment:

•  Please note that accounting charges are based on the node usage (not
the core usage). A job using 4way will incur an SU charge four times
larger than a default run using 16way (and requesting the same number
of tasks)

2 MPI tasks per node 15.36 GB memory/
task 2way

Meaning PE

4 MPI tasks per node 7.68 GB memory/
task 4way

8 MPI tasks per node 3.84 GB memory/
task 8way

16 MPI tasks per node, 1.92 GB memory/
task 16way

Batch Script Suggestions

•  Echo issuing commands
–  (“set -x” and “set echo” for ksh and csh).

•  Avoid absolute pathnames
–  Use relative path names or environment variables ($HOME,

$WORK)
•  Abort job when a critical command fails.
•  Print environment

–  Include the "env" command if your batch job doesn't execute the
same as in an interactive execution.

•  Use “./” prefix for executing commands in the current directory
–  The dot means to look for commands in the present working

directory. Not all systems include "." in your $PATH variable.
(usage: ./a.out).

•  Track your CPU time

18

LSF/SGE Job Monitoring (showq utility)
lslogin1% showq
ACTIVE JOBS--------------------
JOBID JOBNAME USERNAME STATE PROC REMAINING STARTTIME

11318 1024_90_96x6 vmcalo Running 64 18:09:19 Fri Jan 9 10:43:53
11352 naf phaa406 Running 16 17:51:15 Fri Jan 9 10:25:49
11357 24N phaa406 Running 16 18:19:12 Fri Jan 9 10:53:46
 23 Active jobs 504 of 556 Processors Active (90.65%)

IDLE JOBS----------------------
JOBID JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME

11169 poroe8 xgai Idle 128 10:00:00 Thu Jan 8 10:17:06
11645 meshconv019 bbarth Idle 16 24:00:00 Fri Jan 9 16:24:18
 3 Idle jobs

BLOCKED JOBS-------------------
JOBID JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME

11319 1024_90_96x6 vmcalo Deferred 64 24:00:00 Thu Jan 8 18:09:11
11320 1024_90_96x6 vmcalo Deferred 64 24:00:00 Thu Jan 8 18:09:11
 17 Blocked jobs

Total Jobs: 43 Active Jobs: 23 Idle Jobs: 3 Blocked Jobs: 17

LSF Job Monitoring (bjobs command)
lslogin1% bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
11635 bbarth RUN normal lonestar 2*compute-8 *shconv009 Jan 9 16:24
 2*compute-9-22
 2*compute-3-25
 2*compute-8-30
 2*compute-1-27
 2*compute-4-2
 2*compute-3-9
 2*compute-6-13
11640 bbarth RUN normal lonestar 2*compute-3 *shconv014 Jan 9 16:24
 2*compute-6-2
 2*compute-6-5
 2*compute-3-12
 2*compute-4-27
 2*compute-7-28
 2*compute-3-5
 2*compute-7-5
11657 bbarth PEND normal lonestar *shconv028 Jan 9 16:38
11658 bbarth PEND normal lonestar *shconv029 Jan 9 16:38
11662 bbarth PEND normal lonestar *shconv033 Jan 9 16:38
11663 bbarth PEND normal lonestar *shconv034 Jan 9 16:38
11667 bbarth PEND normal lonestar *shconv038 Jan 9 16:38
11668 bbarth PEND normal lonestar *shconv039 Jan 9 16:38

Note: Use “bjobs -u all” to
see jobs from all users.

19

SGE Job Monitoring (qstat command)
login4$ qstat -s a
job-ID prior name user state submit/start at queue slots
--
 16414 0.12347 NAMD user001 r 01/09/2008 15:13:58 normal@i101-302... 512
 15907 0.13287 tf7M.8 user001 r 01/09/2008 13:36:20 normal@i105-410... 512
 15906 0.13288 f7aM.7 user001 r 01/09/2008 13:33:47 normal@i171-401... 512
 16293 0.06248 ch.r32 user001 r 01/09/2008 14:56:58 normal@i175-309... 256
 16407 0.12352 NAMD user001 qw 01/09/2008 12:23:21 512
 16171 0.00000 f7aM.8 user001 hqw 01/09/2008 10:03:43 512
 16192 0.00000 tf7M.9 user001 hqw 01/09/2008 10:06:17 512

Basic qstat options:
-s {p|r|e|a|…} Display jobs with the specified status (a for all)

 Default setting shows running jobs only
-u username Display jobs belonging to specified user (* for all users)
-t Display detailed information about controlled subtasks
-r Display extended job information
-g {c|d|t} Display grouping information according to cluster, job

 arrays or parallel jobs (c most commonly used)

SGE Job Manipulation/Monitoring
•  To kill a running or queued job (takes ~30 seconds to complete):

 qdel <jobID>
 qdel -f <jobID> (Use when qdel alone won’t delete the job)

•  To suspend a queued job:
 qhold <jobId>

•  To resume a suspended job:
 qhold -r <jobID>

•  To see more information on why a job is pending:
 qstat –r -j <jobID>

•  To see a historical summary of a job:
 qacct –j <jobID>

login4$ qacct -j 16110
==
qname normal
hostname i172-208.ranger.tacc.utexas.edu
...
qsub_time Wed Dec 31 18:00:00 1969
start_time Wed Jan 9 08:33:41 2008
end_time Wed Jan 9 08:33:51 2008
...

20

Serial/Threaded Compilers (Intel/PGI)

Compiler Program Type Suffix Example

icc/pgcc C .c icc [options] prog.c

icpc/pgCC C++ .C, .cc, .cpp,
.cxx icpc [options] prog.cpp

ifort/pgf77 F77 .f, .for, .ftn ifort -Vaxlib [options] prog.f

Ifort/pgf90 F90 .f90, .fpp ifort -Vaxlib [options] prog.f90

C icc -o prog [options] prog.c [linker options]
F90 ifort -o prog -Vaxlib [options] prog.f90 [linker options]

MPI Compilation (what you really want)

C mpicc -o prog [options] prog.c [linker options]
F90 mpif90 -o prog -Vaxlib [options] prog.f90 [linker options]

mpif90 -Vaxlib prog.f90 .f90, .fpp F90 mpif90

mpif77 -Vaxlib prog.f .f, .for, .ftn F77 mpif77

mpiCC prog.cc .C, .cc, .cpp, .c
xx C++ mpiCC

mpicc prog.c .c c mpicc

Example Type Suffix Program Compiler

21

Useful Compiler Options (Ranger)

PGI Intel 10 Intel 9 Description

-O3 -O3 -O3 Aggressive serial
optimizations

-ipa=fast,inline -ipo / -ip -ipo / -ip Interprocedural optimization

-mp -openmp -openmp Enable generation of OpenMP
code

-tp barcelona-64 -xO -xW
-xT (Lonestar)

Enable generation of SSE
instructions

-g –gopt -g -g Include debugging symbols

-help -help -help List help information

Math Libraries (Intel)

•  MKL (Math Kernel Library)
–  LAPACK, BLAS, and extended BLAS (sparse), FFTs

(single- and double-precision, real and complex data types).
–  APIs for both Fortran and C
–  www.intel.com/software/products/mkl/

Example: mpicc -Wl,-rpath,$TACC_MKL_LIB -I$TACC_MKL_INC
mkl_test.c -L$TACC_MKL_LIB -lmkl_em64t

•  VML (Vector Math Library) [equivalent to libmfastv]
–  Vectorized transcendental functions.
–  Optimized for Pentium III, 4, Xeon, and Itanium processors.

22

Math Libraries (AMD)

•  ACML (AMD Core Math Library)
–  LAPACK, BLAS, and extended BLAS (sparse),

FFTs (single- and double-precision, real and
complex data types).

–  APIs for both Fortran and C
–  http://developer.amd.com/acml.jsp

Example: mpicc -Wl,-rpath,$TACC_ACML_LIB -I
$TACC_ACML_INC acml_test.c -L$TACC_ACML_LIB –
lacml_mp

Performance Libraries
•  papi (NCSA Tools Hardware Performance Monitor)

–  Events, floats, instruction, data access, cache access,
TLB misses (4 counters available on Barcelona, 2 on Intel
Woodcrest)

–  http://www.ncsa.uiuc.edu/UserInfo/Resources/Software/
Tools/PAPI

•  TAU (Tuning and Analysis Utilities)
–  Portable profiling and tracing toolkit for performance analysis

of parallel programs
–  www.cs.uoregon.edu/research/paracomp/tau/
–  Fortran 77/90, C, C++, Java
–  OpenMP, pthreads, MPI, mixed mode

23

Little vs Big Endian

•  A byte is the lowest addressable storage unit on
many machines.

•  A “word”, often refers to a group of bytes.
•  There are two different ways to store a word on disk

and memory: Big Endian and Little Endian.
•  Intel Pentium and AMD Opteron machines are Little

Endian Machines.
•  Most “big iron” machines are Big Endian: (Crays,

IBMs, & SGIs. Macs (Motorola processors) are Big
Endian machines.

Little vs Big Endian Storage

Little Ending
Little Endian means the bytes are stored from the least significant byte to the

highest, beginning at the lowest address. The word is stored “little end first”

Big Ending
Big Endian means the bytes are stored from the most significant byte to the

lowest, beginning at the lowest address. The word is stored “big end first”

B4 B3 B2 B1 Word (least significant digits in B1)

B4 B3 B2 B1

B4 B3 B2 B1
+0 +1 +2 +3 Base Address

+0 +1 +2 +3 Base Address

24

Little vs Big Endian Conversion

•  C code uses shift and “and” macro.
–  For 4-byte words: Shift all bytes to correct position and zero out

everything else, then “or” components:

#define SWAP32(x) \
 x = ((((x) & 0xff000000) >> 24) | (((x) & 0x00ff0000) >> 8) | \
 (((x) & 0x0000ff00) << 8) | (((x) & 0x000000ff) << 24))

–  For 8-byte words:
•  use a 4-byte pointer (a) to the data,
•  SWAP on both 4 byte groups and then exchange the first 4 bytes

and last 8 bytes:

SWAP32(a[j]); SWAP32(a[j+1]);
atmp = a[j];
a[j] = a[j+1];
a[j+1] = atmp;

Platform Independent Binary Files

•  XDR
–  Developed by SUN as part of NSF
–  Using XDR API gives platform independent binary files
–  man xdr_vector
–  man xdr_string

•  NETCDF – Unidata Network Common Data Form
–  Common format used in Climate/Weather/Ocean applications
–  http://my.unidata.ucar.edu/content/software/netcdf/docs.html
–  module load netcdf; man netcdf

•  HDF - Hierarchical Data Format developed by NCSA
–  http://hdf.ncsa.uiuc.edu/

25

References

•  www.tacc.utexas.edu/ {click on User Guides}
•  www.redhat.com
•  www-unix.mcs.anl.gov/mpi/
•  www.tacc.utexas.edu/resources/user_guides/ssh_intro/
•  www.rocksclusters.org/Rocks/
•  www.pbspro.com/openpbs.html
•  www.tacc.utexas.edu/resources/user_guides/intel/
•  www.tacc.utexas.edu/resources/user_guides/mkl/
•  MKL/VML /opt/intel/mkl8.1/doc (pdf & html)
•  www.tacc.utexas.edu/resources/user_guides/modules/
•  www-unix.mcs.anl.gov/romio/papers.html

