
Lab 1

Programming Environment, File
Systems, Modules, Batch System

1

LAB I: Program Environments

•  login to the Sun Constellation system (ranger) using your train## login:

 ssh -X train##@ranger.tacc.utexas.edu

•  Untar the file lab1.tar file (in ~train00) into your directory:

 tar xvf ~train00/lab1.tar

•  Change into the lab1 directory:

 cd lab1

2

Programming Environment

1.) Look at your Environment Variables (e.g. $WORK, $ARCHIVE,…).
2.) Discover which file systems are Lustre file system and local file systems.
3.) Take a look at the default files in your home directory.
4.) Determine the version of the operating system you are using
5-7.) Cd to $WORK using the cdw alias; Determine who owns the directory;
 determine the value of the $WORK variable (execute “pwd”).

 1 env | more
2 df -h

 3 ls –la
4 uname –a

 5 cdw

 6 ls -ld

 7 echo $WORK

3

Programming Environment

1.) Check your quota:

 lfs quota -u <username> /share
 lfs quota -u <username> /work

 lfs quota -u <username> /scratch

2.) What do you think all the output means?

4

File Systems – scp vs rcp

•  Create an executable that will generate a large file:

 make mkfile

•  Execute the mkfile command to create a 50MB file:

 mkfile

Cd to the copy directory: cd $HOME/lab1/copy.
Time the amount of time it takes to copy a 50MB file from
your home directory to ranch.tacc.utexas.edu using “scp” and
“rpc”.

 rcp <file> ${ARCHIVER}:${ARCHIVE}
 scp <file> ${ARCHIVER}:${ARCHIVE}

Use “/usr/bin/time” on Linux machines.
Use the “do_cp” command to perform these operations.

5

File Systems – scp vs rcp

•  Linux (ranger)
–  lslogin2$ /usr/bin/time –p /usr/bin/rcp fort.7 ${ARCHIVER}:$ARCHIVE
–  lslogin2$ /usr/bin/time –p scp fort.7 ${ARCHIVER}:$ARCHIVE

•  You should observe about a 1:5 ratio in wall clock times

•  You can use the do_cp script to run both cases:
–  do_cp

•  Remove the executables, object files, and fort.7 when finished:
–  make clean

6

•  List the arguments available in the module command [execute “module”]
•  List the modules that are presently loaded [module list].
•  List the modules that are available [module avail].
•  Determine which mpicc is being used

(switch to mvapich-devel MPI and Intel Compiler)

login3% module
login3% module list
login3% module avail
login3% which mpicc

login3% which mpicc
login3% module unload mvapich2
login3% module swap pgi intel
login3% module load mvapich-devel

Modules

7

SGE Batch (ranger)
•  Cd back to cd $HOME/lab1/batch.
•  Compile the simple “hello world” fortran MPI code

 mpif90 –O3 mpihello.f90
 mpicc –O3 mpihello.c

•  Look over the “job” script, and submit the program to LSF batch:

qsub job

•  Watch the status of your job and see the details (-f):

 qstat
 qstat –f –j <jobid>
 showq

•  Now, put a “sleep 60” statement in the jobs script, resubmit it, & delete the job:

 vi job …
 qsub job {observe the returned jobid or determine it from bjobs}
 qdel jobid

8

Precision

Look over the precision.f program in the precision dir.;
cd $HOME/lab1/precision.

Note: The sin of pi should be identically zero. The pi constant uses “E”
format in one case and “D” in the other.It makes a difference! Compile
precision.f and compare the results of the two sin(pi) calculations.

•  module unload mvapich2
module swap pgi intel
module load mvapich2

•  Ranger
login3% ifort –FR precision .f (or)
 login3% ifort precision.f90
 login3% ./a.out

(The ifc compiler regards “.f” files
 as F77 fixed format programs.
The –FR option specifies that the
file is free format.)

9

Makefiles

•  Cd down to the using_makefiles directory. Read over the Makefile
file. The include file automatically defines the compilers and loader.

Flags used for the system are defined by the make macro ${SYSTEM}.
The compilers are Intel “ifort” or PGI “pgif77/90”; the –FR flag is used
for the Intel compiler.

•  Create a new a.out [make].
•  Put a new access time on suba.f (Or edit the file, and save results).
•  Now execute make again. Note: Only suba.f is recompiled.

Unmodified .f files are not compiled. A new a.out is generated.

Example:

cd using_makefiles
make
touch suba.f (or “vi suba.f*”, change a statement and save it.)
make

10

Library Generation

Generate a library from the subroutine with the ar command
[ar –ruv <lib_name> <object_files>].

Now use the library to make a new a.out.
Compile the main program and load the library [<compiler> prog.f libsub.a].

•  Linux Cluster
login3% ar -rv libsub.a suba.o subb.o
login3% ifort -FR –O3 prog.f libsub.a
login3% ./a.out {execute “ifort --help” to discover

 what the “-FR” option means.}

