2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1991 | 1990 | 1989 | 1988 | 1987 | 1986 | 1985 | 1984 | 1983 | 1982 | 1981 | 1980 | 1979 | 1978 | 1977 | 1976 | 1975 | 1974 | 1973 | 1972 | 1971 | 1970 | 1969 | 1968 | 1967 | 1966 | 1965 | 1964 | 1963 | 1962 | 1961 | 500 | 76 | 0
Structural, dielectric relaxation and magnetic features of the (La0.Ca0.2)0.9Bi0.1Fe1-yTiyO3 (y = 0.0 and 0.1) nanoparticles
Authors: A. Benali, M. Bejar, E. Dhahri, M.P.F. Graça, M.A. Valente, E.K. Hlil, B.F.O. Costa
Ref.: J. Alloys Compd. 876, 160222 (2021)
Abstract: Two nanoparticle orthoferrite materials (La0.8Ca0.2)0.9Bi0.1Fe1−yTiyO3 (y = 0.0 and 0.1) have been successfully synthesized via the assisted ball milling solid-state reaction. The effect of Bismuth and Titanium ions insertion in A and B-sites of La0.8Ca0.2FeO3 material on structural, dielectric relaxation and magnetic properties was conducted. Structural study reveals the formation of majoritarian orthorhombic phase in both nanomaterials. Importantly, both compounds present a giant dielectric constant ε’ and low dielectric loss tangent tg(δ). Two relaxation processes have been detected at low and high-temperature ranges. The adjustment of the imaginary parts of complex Modulus via the Havriliak-Negami formalism (H-N) confirms a Cole-Cole (grains) and Cole-Davison (grain boundaries) relaxation processes at low and high temperature regions, respectively. The magnetic study reveals the enhancement of magnetization when introducing Titanium ions in B-site which increases the Ferromagnetic interactions. It also confirms an important decrease in the Curie Weis temperature (TC = 450 K).