2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1991 | 1990 | 1989 | 1988 | 1987 | 1986 | 1985 | 1984 | 1983 | 1982 | 1981 | 1980 | 1979 | 1978 | 1977 | 1976 | 1975 | 1974 | 1973 | 1972 | 1971 | 1970 | 1969 | 1968 | 1967 | 1966 | 1965 | 1964 | 1963 | 1962 | 1961 | 500 | 76 | 0
Density gradients for the exchange energy of electrons in two dimensions
Authors: S. Pittalis, E. Räsänen, J.G. Vilhena and M.A.L. Marques
Ref.: Phys. Rev. A 79, 012503 (2009)
Abstract: We present a generalized gradient approximation to the exchange energy to be used in density functional theory calculations of two-dimensional systems. This class of approximations has a long and successful history, but it has been not yet fully investigated for electrons in two dimensions. We follow the approach originally proposed by Becke for three-dimensional systems [Int. J. Quantum Chem. 23, 1915 (1983), J. Chem. Phys. 85, 7184 (1986)]. The resulting functional depends on two parameters that are adjusted to a test set of parabolically confined quantum dots. Our exchange functional is then tested on a variety of systems with promising results, reducing the error in the exchange energy by a factor of four with respect to the simple local density approximation.
DOI: 10.1103/PhysRevA.79.012503
URL: arxiv.org