2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1991 | 1990 | 1989 | 1988 | 1987 | 1986 | 1985 | 1984 | 1983 | 1982 | 1981 | 1980 | 1979 | 1978 | 1977 | 1976 | 1975 | 1974 | 1973 | 1972 | 1971 | 1970 | 1969 | 1968 | 1967 | 1966 | 1965 | 1964 | 1963 | 1962 | 1961 | 500 | 76 | 0
Evaporating primordial black holes, the string axiverse, and hot dark radiation
Authors: Marco Calzà, John March-Russell, João G. Rosa
Ref.: Submitted not yet accepted (2022)
Abstract: We show that primordial black holes (PBHs) develop non-negligible spins through Hawking emission of the large number of axion-like particles generically present in string theory compactifications. This is because scalars can be emitted in the monopole mode (l=0), where no angular momentum is removed from the BH, so a sufficiently large number of scalars can compensate for the spin-down produced by fermion, gauge boson, and graviton emission. The resulting characteristic spin distributions for 10^8-10^12 kg PBHs could potentially be measured by future gamma-ray observatories, provided that the PBH abundance is not too small. This yields a unique probe of the total number of light scalars in the fundamental theory, independent of how weakly they interact with known matter. The present local energy density of hot, MeV-TeV, axions produced by this Hawking emission can possibly exceed ρCMB. Evaporation constraints on PBHs are also somewhat weakened.
URL: Download