2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1991 | 1990 | 1989 | 1988 | 1987 | 1986 | 1985 | 1984 | 1983 | 1982 | 1981 | 1980 | 1979 | 1978 | 1977 | 1976 | 1975 | 1974 | 1973 | 1972 | 1971 | 1970 | 1969 | 1968 | 1967 | 1966 | 1965 | 1964 | 1963 | 1962 | 1961 | 500 | 76 | 0
Indirect lattice evidence for the Refined Gribov-Zwanziger formalism and the gluon condensate $raket{A^2}$ in the Landau gauge
Authors: D. Dudal, O. Oliveira, N. Vandersickel
Ref.: Phys. Rev. D81, 074505 (2010)
Abstract: We consider the gluon propagator D(p2) at various lattice sizes and spacings in the case of pure SU(3) Yang-Mills gauge theories using the Landau gauge fixing. We discuss a class of fits in the infrared region in order to (in)validate the tree level analytical prediction in terms of the (refined) Gribov-Zwanziger framework. It turns out that an important role is played by the presence of the widely studied dimension two gluon condensate ⟨A2⟩. Including this effect allows to obtain an acceptable fit around 1 to 1.5 GeV, while corroborating the refined Gribov-Zwanziger prediction for the gluon propagator. We also discuss the infinite volume extrapolation, leading to the estimate D(0)=8.3±0.5 GeV-2. As a by-product, we can also provide the prediction ⟨g2A2⟩≈3 GeV2 obtained at the renormalization scale μ=10 GeV.
DOI: 10.1103/PhysRevD.81.074505
URL: prd.aps.org