2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1991 | 1990 | 1989 | 1988 | 1987 | 1986 | 1985 | 1984 | 1983 | 1982 | 1981 | 1980 | 1979 | 1978 | 1977 | 1976 | 1975 | 1974 | 1973 | 1972 | 1971 | 1970 | 1969 | 1968 | 1967 | 1966 | 1965 | 1964 | 1963 | 1962 | 1961 | 500 | 0
Synthesis and structure of novel pyrimidine-thioethers: structural effects on reactivity along with an unpredicted dimethylamination reaction
Authors: Inês C. C. Costa; Luís M. T. Frija; André F. Augusto; José A. Paixão; Maria L. S. Cristiano
Ref.: ChemPhysChem 26(18), e202500308 (2025)
Abstract: Buchwald-Hartwig reactions have been in the spotlight over the past years due to their usefulness in creating a wide range of chemical skeletons applied in drug discovery. Aminopyrimidines are heterocyclic structures with significant biological relevance and compounds bearing the amino- and diaminopyrimidine motifs have been associated with antiviral, antibacterial, antiparasitic, antifungal, anticancer, and anti-inflammatory properties. Given the notable status of aminopyrimidines in the design of target-specific drug candidates, the synthesis and structure of four aminopyrimidine-arylsulfide conjugates (3, 4, 5, and 6) are reported that are designed to inhibit trypanothione reductase, a key enzyme in the redox pathway of trypanosomatids. When applying the Buchwald-Hartwig synthetic approach, the formation of different products is witnessed by altering the reaction conditions, observing that regioselectivity is conditioned by reaction time and by Boc-protection of the starting 2,6-dichloropyrimidin-4-amine. The electron-withdrawing character of the protecting group appears to increase the susceptibility of the pyrimidine at C2 for further reaction with the solvent, DMF, yielding the corresponding diaminopyrimidine-based conjugates. The crystal structures of the novel aminopyrimidine-arylsulfide conjugate and their Boc-protected 2,6-dichloropyrimidin-4-amine precursors are disclosed and discussed.

