2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1991 | 1990 | 1989 | 1988 | 1987 | 1986 | 1985 | 1984 | 1983 | 1982 | 1981 | 1980 | 1979 | 1978 | 1977 | 1976 | 1975 | 1974 | 1973 | 1972 | 1971 | 1970 | 1969 | 1968 | 1967 | 1966 | 1965 | 1964 | 1963 | 1962 | 1961 | 500 | 76 | 0

CLASSES OF NON-HERMITIAN OPERATORS WITH REAL EIGENVALUES

Authors: Bebiano N, da Providencia J, da Providencia JP

Ref.: ELECTRONIC JOURNAL OF LINEAR ALGEBRA 21, 98 (2010)

Abstract: Classes of non-Hermitian operators that have only real eigenvalues are presented. Such operators appear in quantum mechanics and are expressed in terms of the generators of the Weyl-Heisenberg algebra. For each non-Hermitian operator A, a Hermitian involutive operator (J) over cap such that A is (J) over cap -Hermitian, that is, (J) over cap A = A* (J) over cap, is found. Moreover, we construct a positive definite Hermitian Q such that A is Q-Hermitian, allowing for the standard probabilistic interpretation of quantum mechanics. Finally, it is shown that the considered matrices are similar to Hermitian matrices.