2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1991 | 1990 | 1989 | 1988 | 1987 | 1986 | 1985 | 1984 | 1983 | 1982 | 1981 | 1980 | 1979 | 1978 | 1977 | 1976 | 1975 | 1974 | 1973 | 1972 | 1971 | 1970 | 1969 | 1968 | 1967 | 1966 | 1965 | 1964 | 1963 | 1962 | 1961 | 500 | 76 | 0
Ab-initio theory of superconductivity -- I: Density functional formalism and approximate functionals
Authors: M. Lüders, M.A.L. Marques, N.N. Lathiotakis, A. Floris, G. Profeta, L. Fast, A. Continenza, S. Massidda, E.K.U. Gross
Ref.: Phys. Rev. B 72, 024545 (2005)
Abstract: A novel approach to the description of superconductors in thermal equilibrium is developed within a formally exact density-functional framework. The theory is formulated in terms of three "densities": the ordinary electron density, the superconducting order parameter, and the diagonal of the nuclear N-body density matrix. The electron density and the order parameter are determined by Kohn-Sham equations that resemble the Bogoliubov-de Gennes equations. The nuclear density matrix follows from a Schroedinger equation with an effective N-body interaction. These equations are coupled to each other via exchange-correlation potentials which are universal functionals of the three densities. Approximations of these exchange-correlation functionals are derived using the diagrammatic techniques of many-body perturbation theory. The bare Coulomb repulsion between the electrons and the electron-phonon interaction enter this perturbative treatment on the same footing. In this way, a truly ab-initio description is achieved which does not contain any empirical parameters.
URL: Download, hdl.handle.net, arxiv.org