2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1991 | 1990 | 1989 | 1988 | 1987 | 1986 | 1985 | 1984 | 1983 | 1982 | 1981 | 1980 | 1979 | 1978 | 1977 | 1976 | 1975 | 1974 | 1973 | 1972 | 1971 | 1970 | 1969 | 1968 | 1967 | 1966 | 1965 | 1964 | 1963 | 1962 | 1961 | 500 | 76 | 0

Supercritically dried superparamagnetic mesoporous silica nanoparticles for cancer theranostics

Authors: Vaz-Ramos, J; Cordeiro, R; Castro, MMCA; Geraldes, CFGC; Costa, BFO; Faneca, H ; Duraes, L

Ref.: Mater. Sci. Eng. C 115, 111124 (2020)

Abstract: Mesoporous silica nanoparticles with a superparamagnetic iron oxide core were prepared in this work, in order to obtain multifunctional platforms with adequate features for cancer theranostics. Three different core-shell nanocomplexes were obtained: IO-OAm/mSiO2, IO-APTES/mSiO2 and IO/SiO2/mSiO2. In the case of IO-OAm/mSiO2 and IO-APTES/mSiO2, iron oxide (IO) was obtained by thermal decomposition, having in this case a coating of oleylamine (OAm) that was in the second formulation exchanged by (3-aminopropyl)triethoxysilane ligand (APTES). Regarding the IO/SiO2/mSiO2 formulation, iron oxide was synthesized by microemulsion. The mesoporous silica shell (mSiO2) on the IO nanoparticles was obtained by sol-gel and the final materials were dried by supercritical fluids drying. VSM confirmed the superparamagnetic behaviour of the nanoparticles, leading to MS of 4.0, 1.8 and 10.2 emu·g−1, for IO-OAm/mSiO2, IO-APTES/mSiO2 and IO/SiO2/mSiO2, respectively. NMR relaxometry has shown the potential of these nanoparticles to be used as T2 contrast agents, with r2 values as high as 63.93 s−1·mM−1 Fe. The three types of nanoparticles exhibited loading contents of epirubicin of ~3% and drug release percentages of 19% for IO-OAm/mSiO2, 24% for IO-APTES/mSiO2 and 31% for IO/SiO2/mSiO2. The cytotoxicity of drug-loaded and non-loaded most promising nanoparticles was assessed, showing high potential of these platforms for application as anticancer drug carriers.

DOI: 10.1016/j.msec.2020.111124